Skip to main content

Mechanical Ventilation in Cardiogenic and Septic Shock

  • Chapter
Book cover Update 1988

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 5))

Abstract

Hypoxemic or hypercapnic respiratory failure has traditionally been the main cause of mechanical ventilation. Although respiratory failure is a frequent complication of shock, the use of mechanical ventilation has been instituted only when severe gas exchange abnormalities occurred. We maintain that mechanical ventilation should be instituted early in the course of shock for two reasons:

  1. 1

    to put the respiratory muscles at rest, and thereby avoid respiratory muscle fatigue, and

  2. 2

    to free blood from the working respiratory muscles. The blood can, in turn, supply vital organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubier M, Trippenbach T, Roussos Ch (1981) Respiratory muscle fatigue during cardiogenic shock. J Appl Physiol 51:499–508.

    PubMed  CAS  Google Scholar 

  2. Hussain SNA, Simkus G, Roussos Ch (1985) Ventilatory muscle fatigue, the cause of respiratory failure in septic shock. J Appl Physiol 58:2033–2040.

    PubMed  CAS  Google Scholar 

  3. Viires N, Sillye G, Aubier M, Rassidakis A, Roussos Ch (1983) Regional bood flow distribution in dog during induced hypotension and low cardiac output. Spontaneous breathing versus artificial ventilation. J Clin Invest 72:935–947.

    Article  PubMed  CAS  Google Scholar 

  4. Aubier M, Viires N, Sillye G, Mozes R, Roussos Ch (1982) Respiratory muscle contribution to lactic acidosis in low cardiac output. Am Rev Respir Dis 126:642–652.

    Google Scholar 

  5. Hussain S, Roussos Ch (1985) Distribution of respiratory muscle and organ blood flow during endotoxin shock in dogs. J Appl Physiol 59:1802–1808.

    PubMed  CAS  Google Scholar 

  6. Peretz DI, McGregor M, Dossetor JB (1964) Lactic acidosis: a clinically significant aspect of shock. Can Med Assoc J 90:673–675.

    PubMed  CAS  Google Scholar 

  7. Vincent JL, Dufaye P, Berré J, Leeman M, Degaute JP, Kahn RJ (1983) Serial lactate determinations during circulatory shock. Crit Care Med 11:449–451.

    Article  PubMed  CAS  Google Scholar 

  8. Blair E, Cowley A, Tait MK (1965) Refractory septic shock in man: role of lactate and pyruvate metabolism in prognosis. Ann Surg 31:537–540.

    CAS  Google Scholar 

  9. Field S, Kelly SM, Macklem PT (1982) The oxygen cost of breathing in patients with cardiorespiratory disease. Am Rev Respir Dis 126:9–13.

    PubMed  CAS  Google Scholar 

  10. Burzstein S, Taitelman U, DeMyttenaere S, et al (1978) Reduced oxygen consumption in catabolic states with mechanical ventilation. Crit Care Med 6:162–168.

    Article  Google Scholar 

  11. Bjork VO, Grenvik A, Holmdahl MH, Westerholm CJ (1964) Cardiac output and oxygen consumption during respiratory treatment. Acta Anaesth Scand (supp) 15:158–160.

    Article  Google Scholar 

  12. Robotham JL, Scharf SM (1983) Effects of positive and negative pressure ventilation on cardiac performance. Clin Chest Med 4:161–187.

    PubMed  CAS  Google Scholar 

  13. Luce JM (1984) The cardiovascular effects of mechanical ventilation and positive end expiratory pressure. JAMA 252:807–811.

    Article  PubMed  CAS  Google Scholar 

  14. Ashbaugh CG, Petty TL (1973) Positive end-expiratory pressure physiology, indications and contraindications. J Thor Cardiovas Surg 65:165.

    CAS  Google Scholar 

  15. Qvist J, Pontoppidan H, Wilson RS, Lowenstein E, Laver MB (1975) Hemodynamic responses to mechanical ventilation with PEEP. Anaesthesiology 42:45–55.

    Article  CAS  Google Scholar 

  16. Grindlinger GA, Manny J, Justice R, Dunham, Shepro D, Heshtman HB (1979) Presence of negative inotropic agents in caning plasma during positive end-expiratory pressure. Circ Res 45:460–467.

    PubMed  CAS  Google Scholar 

  17. Click G, Weschler AS, Epstein SE (1969) Reflex cardiovascular depression produced by stimulation of pulmonary stretch receptors in the dog. J Clin Invest 48:467–473.

    Article  Google Scholar 

  18. Marthru M (1985) Mechanical breath; non-pharmacologic support for a failing heart? Chest 85:1.

    Article  Google Scholar 

  19. Ellman H, Dembin H (1982) Lack of adverse hemodynamic effects of PEEP in patients with acute respiratory failure. Crit Care Med 10:706–711.

    Article  PubMed  CAS  Google Scholar 

  20. Calvin JE, Driedser AA, Sibbald WJ (1981) Positive end-expiratory pressure does not depress left ventricular function in patients with edema. Am Rev Respir Dis 124:121–128.

    PubMed  CAS  Google Scholar 

  21. Beach T, Milien E, Grenvik A (1973) Hemodynamic response to discontinuation of mechanical ventilation. Crit Care Med 1:85–90.

    Article  PubMed  CAS  Google Scholar 

  22. Pinsky MR, Summer WR (1983) Cardiac augmentation by phasic high intrathoracic pressure support in man. Chest 84:370–375.

    Article  PubMed  CAS  Google Scholar 

  23. Pinsky MR, Summer WR, Wise RH, et al (1983) Augmentation of cardiac function by elevation of intrathoracic pressure. J Appl Physiol 54:950–955.

    PubMed  CAS  Google Scholar 

  24. Prewitt RM, Oppenheimer L, Sutherland JB, Wood LDH (1981) Effect of positive end-expiratory pressure on left ventricular mechanics in patients with hypoxemic respiratory failure. Anaesthesiology 55:409–415.

    Article  CAS  Google Scholar 

  25. Crace MR, Greenham DM (1982) Cardiac performance in response to PEEP in patients with cardiac dysfunction. Crit Care Med 10:358–360.

    Article  Google Scholar 

  26. Criley JM, Balfuss Ah, Vissel GL (1976) Cough-induced cardiac compression: self-administered form of cardiopulmonary resuscitation. JAMA 236:1246–1250.

    Article  PubMed  CAS  Google Scholar 

  27. Chandra N, Weisfeldt ML, Tsitlik J, et al (1981) Augmentation of carotid flow during cardiopulmonary resuscitation by ventilation at high airway pressure with chest compression. Am J Cardiol 48:1053–1063.

    Article  PubMed  CAS  Google Scholar 

  28. Rosborough JP, Nieman JT, Griley JM, et al (1981) Lower abdominal compression with synchronized ventilation; a CPR modality. Circulation 64 (suppl 4):303 (Abstract).

    Google Scholar 

  29. Niemann JT, Rosborough JP, Niskanen RA, Criley JM (1984) Circulatory support during cardiac arrest using a pneumatic vest and abdominal binder with simultaneous high-pressure airway inflation. Ann Emerg Med 13:270–277.

    Google Scholar 

  30. Passerini L, Wise RA, Roussos Ch (1985) Maintenance of circulation during CPR with mechanical ventilation. Clin Invest Med 8:R164.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roussos, C. (1988). Mechanical Ventilation in Cardiogenic and Septic Shock. In: Vincent, J.L. (eds) Update 1988. Update in Intensive Care and Emergency Medicine, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83392-2_92

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83392-2_92

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18981-7

  • Online ISBN: 978-3-642-83392-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics