Advertisement

Update 1988 pp 462-473 | Cite as

Pharmacology of Drugs in CPR

  • J. C. Mercier
  • J. F. Hartmann
  • F. Beaufils
Part of the Update in Intensive Care and Emergency Medicine book series (UICM, volume 5)

Abstract

Cardiac arrest results in cessation of organ perfusion. Circulatory standstill leads to immediate cellular ischemia, anoxia and finally death. The brain is the most rapidly damaged organ, already after 4 to 6 minutes of cardiac arrest in human beings [1], maybe longer in very special circumstances such as in the child, or after drowning in iced water [2]. The myocardium is the second most vulnerable organ, which may tolerate 15 minute anoxia and recover. However, at least in children, the longer the cardiac arrest the less the chances to recover a spontaneously beating heart [3].

Keywords

Cardiac Arrest Inferior Vena Cava Myocardial Blood Flow Cardiopulmonary Resuscitation Superior Vena Cava 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cole SL, Corday E (1956), Four-minute limit for cardiac resuscitation. JAMA 161:1454–1458.CrossRefGoogle Scholar
  2. 2.
    Southwick FS, Dalglish PH (1980) Recovery after prolonged asystolic cardiac arrest in profound hypothermia. A case report and literature review. JAMA 243:1250–1253.PubMedCrossRefGoogle Scholar
  3. 3.
    Ludwig S, Kettrick RG, Parker M (1984) Pediatric cardiopulmonary resuscitation. Clin Pediatr 23:71–75.CrossRefGoogle Scholar
  4. 4.
    Safar P, Scarraga LA, Elam JO (1958) A comparison of the mouth-to-mouth and mouth-to-airway methods of artificial respiration with the chest-pressure arm-lift methods. N Engl J Med 258:671–677.PubMedCrossRefGoogle Scholar
  5. 5.
    Kouwenhouven WB, Jude JR, Knickerbocker GG (1960) Closed-chest cardiac massage. JAMA 173:1064–1067.CrossRefGoogle Scholar
  6. 6.
    Voorhes WD, Babbs CF, Tacker WA (1980) Regional blood flow during cardiopulmonary circulation in dogs. Crit Care Med 8:134–136.CrossRefGoogle Scholar
  7. 7.
    Luce JM, Ross BK, O’Quin RJ, et al (1983) Regional blood flow during cardiopulmonary resuscitation in dogs using simultaneous and nonsimultaneous compression and ventilation. Circulation 67:258–265.PubMedCrossRefGoogle Scholar
  8. 8.
    Rodgers MC (1988) The physiology of cardiopulmonary resuscitation. Intensive Care Med (in press).Google Scholar
  9. 9.
    Criley JM, Blaufuss AH, Kissel GL (1976) Cough-induced cardiac compression. Self-administered. form of cardiopulmonary circulation. JAMA 236:1246–1250.PubMedCrossRefGoogle Scholar
  10. 10.
    Rudikoff MT, Maughan WL, Effron M, et al (1980) Mechanisms of blood flow during cardiopulmonary resuscitation. Circulation 61:345–352.PubMedGoogle Scholar
  11. 11.
    Maier GW, Tyson GS, Olsen CO, et al (1984) The physiology of external cardiac massage: High-impulse cardiopulmonary resuscitation. Circulation 70:86–101.PubMedCrossRefGoogle Scholar
  12. 12.
    Michel JR, Guerci AD, Koehler RC, et al (1984) Mechanisms by which epinephrine augments cerebral and myocardial perfusion during cardiopulmonary resuscitation in dogs. Circulation 69:822–835.CrossRefGoogle Scholar
  13. 13.
    Luce JM, Rizk NA, Niskanen RA (1984) Regional blood flow during cardiopulmonary resuscitation. Crit Care Med 12:874–878.PubMedCrossRefGoogle Scholar
  14. 14.
    Redding JS, Asuncion JS, Pearson JW (1967) Effective routes of drug administration during cardiac arrest. Anaesth Analg 46:253–258.CrossRefGoogle Scholar
  15. 15.
    Redding JS, Pearson JW (1962) Resuscitation from asphyxia. JAMA 182:283–286.PubMedCrossRefGoogle Scholar
  16. 16.
    American Heart Association (1986) Standards and guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiac care (ECC). JAMA 255:2905–2992.CrossRefGoogle Scholar
  17. 17.
    Rossetti V, Thompson BM, Aprahamian C, et al (1984) Difficulty and delay in intravascular access in pediatric arrest. Ann Emerg Med 13:406 (abstract).CrossRefGoogle Scholar
  18. 18.
    Kuhn GJ, White BC, Swetnam RE, et al (1981) Peripheral vs central circulation times during CPR: A pilot study. Ann Emerg Med 10:417–419.PubMedCrossRefGoogle Scholar
  19. 19.
    Hedges JR, Barsan WB, Doan LA, et al (1984) Central versus peripheral intravenous routes in cardiopulmonary resuscitation. Am J Emerg Med 2:385–390.PubMedCrossRefGoogle Scholar
  20. 20.
    Keats S, Jackson RE, Kosnik JW, et al (1985) Effect of peripheral versus central injection of epinephrine on changes in aortic diastolic pressure during closed-chest massage in dogs. Ann Emerg Med 14:495 (abstract).CrossRefGoogle Scholar
  21. 21.
    Criley JM, Niemann JT, Rosborough JP, et al (1981) The heart is a conduit in CPR. Crit Care Med 9:373–374.PubMedCrossRefGoogle Scholar
  22. 22.
    Dalsey WC, Barsan WG, Joyce SM, et al (1984) Comparison of superior vena caval and inferior vena cava access using a radioisotope technique during normal perfusion and cardiopulmonary resuscitation. Ann Emerg Med 13:881–884.PubMedCrossRefGoogle Scholar
  23. 23.
    Nieman JT, Rosborough JP, Hausknecht M, et al (1981) Pressure-synchronized cineangiography during experimental cardiopulmonary resuscitation. Circulation 64:985–991.CrossRefGoogle Scholar
  24. 24.
    Nieman JT, Rosborough JP, Ung S, et al (1984) Hemodynamic effects of abdominal binding during cardiac arrest and resuscitation. Am J Cardiol 53:269–274.CrossRefGoogle Scholar
  25. 25.
    Mercier JC, Gaudelus J (1985) Voies d’abord vasculaires chez le nouveau-né et l’enfant. In: Perelman R, Pédiatrie pratique: Périnatologie. Maloine Paris, pp 1876-1897.Google Scholar
  26. 26.
    Tocantins LM (1940) Rapid absorption of substances injected into the bone marrow. Proc Soc Exp Biol Med 45:292–296.Google Scholar
  27. 27.
    Tocantins LM, O’Neill JF, Jones HW (1941) Infusions of blood and other fluids via the bone marrow: Applications in pediatrics. JAMA 117:1229–1234.CrossRefGoogle Scholar
  28. 28.
    Ber RA (1984) Emergency infusion of catecholamines into bone marrow. Am J Dis Child 138:810–811.Google Scholar
  29. 29.
    Heinild S, Sondergaard T, Tudvad F (1947) Bone marrow infusions in childhood. Experiences from a thousand of infusions. J Pediatr 30:400–401.PubMedCrossRefGoogle Scholar
  30. 30.
    Spivey WH, Lathers CM, Malone DR, et al (1985) Comparison of intraosseous, central, and peripheral routes of sodium bicarbonate during CPR in pigs. Ann Emerg Med 14:1135–1140.PubMedCrossRefGoogle Scholar
  31. 31.
    Spivey WH, Unger HD, McNamara RM, et al (1987) The effect of intraosseous sodium bicarbonate on bone in swine. Ann Emerg Med 16:773–776.PubMedCrossRefGoogle Scholar
  32. 32.
    Otto CW, Yakaitis RW, Blitt CD (1981) Mechanisms of action of epinephrine in resuscitation from asphyxiai arrest. Crit Care Med 9:321–324, 364-365.PubMedCrossRefGoogle Scholar
  33. 33.
    Greenblatt DJ, Koch-Weser J (1975) Clinical pharamcokinetics. N Engl J Med 293:702–705, 964-970.PubMedCrossRefGoogle Scholar
  34. 34.
    Dal Santo G (1977) Non-respiratory functions of the lungs and anesthesia. Little Brown Co Boston pp 61-90.Google Scholar
  35. 35.
    Greenberg MI, Baskin SI, Kaplan AM, et al (1982) Effects of endotracheally administered distilled water and normal saline on the arterial blood gases of dogs. Ann Emerg Med 11:600–604.PubMedCrossRefGoogle Scholar
  36. 36.
    Greenberg MI, Roberts JR, Krusz JC, et al (1979) Endotracheal epinephrine in a canine anaphylactic shock model. JACEP 500-503.Google Scholar
  37. 37.
    Roberts JR, Greenberg MI, Knaub M, et al (1978) Comparison of the pharmalogical effects of epinephrine administered by the intravenous and endotracheal routes. JACEP 7:260–264.PubMedGoogle Scholar
  38. 38.
    Roberts JR, Greenberg MI, Knaub MA, et al (1979) Blood levels following intravenous and endotracheal epinephrine administration. JACEP 8:53–56.PubMedGoogle Scholar
  39. 39.
    Chernow B, Holbrook P, D’Angona DS, et al (1984) Epinephrine absorption after intratracheal administration. Anesth Analg 63:829–832.PubMedCrossRefGoogle Scholar
  40. 40.
    Ralston SH, Voorhes WB, Babbs CF (1984) Intrapulmonary epinephrine during prolonged cardiopulmonary resuscitation: improved regional blood flow and resuscitation. Ann Emerg Med 13:79–86.PubMedCrossRefGoogle Scholar
  41. 41.
    Roberts JR, Greenberg MI, Baskin SI (1979) Endotracheal epinephrine in cardiopulmonary collapse. JACEP 8:515–519.PubMedGoogle Scholar
  42. 42.
    Greenberg MI, Roberts JR, Baskin SI (1981) Use of endotracheally administered epinephrine in a pediatric patient. Am J Dis Child 135:767–768.PubMedGoogle Scholar
  43. 43.
    Lindemann R (1982) Endotracheal administration of epinephrine during cardiopulmonary resuscitation. Am J Dis Child 136:753–754.PubMedGoogle Scholar
  44. 44.
    Lindemann R (1984) Resuscitation of the newborn: Endotracheal administration of epinephrine. Acta Paediatr Scand 73:210–212.PubMedCrossRefGoogle Scholar
  45. 45.
    Elam J (1977) The intrapulmonary route for CPR drugs. In: Safar P (Ed) Advances in cardiopulmonary resuscitation. Springer Verlag, Berlin Heidelberg New York, pp 132–140.CrossRefGoogle Scholar
  46. 46.
    Ward JT Jr (1983) Endotracheal drug therapy. Am J Emergy Med 1:71–82.CrossRefGoogle Scholar
  47. 47.
    Greenberg MI, Mayeda DV, Chrzanowski R, et al (1982) Endotracheal administration of atropine sulfate. Ann Emerg Med 11:546–548.PubMedCrossRefGoogle Scholar
  48. 48.
    Quinton DN, O’Byrne G, Aitkenhead AR (1985) Comparison of endotracheal and peripheral intravenous adrenaline in cardiac arrest: Is the endotracheal route reliable? Lancet 1:828–829.Google Scholar
  49. 49.
    Marchant B (1987) Endotracheal adrenaline in cardiac arrest. Lancet 1:1098.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. C. Mercier
  • J. F. Hartmann
  • F. Beaufils

There are no affiliations available

Personalised recommendations