Skip to main content

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 2))

Abstract

The tight bending of DNA is a ubiquitous feature, both of chromosomal structure and also of nucleoprotein complexes involved in the enzymatic manipulation of DNA. In these structures the DNA follows a defined three-dimensional path — or configuration. However, the DNA double helix does not behave as an isotropic rod. Instead, the structural and mechanical properties of DNA vary in a sequence-dependent manner resulting in a molecule which is flexurally anisotropic (Calladine and Drew 1986). Thus, the sequence of the DNA molecule determines its preferred configuration, and hence its ability to wrap around a protein core. This ability to assume a particular configuration we term bendability which is thus a property which reflects the conformational rigidity or flexibility of individual short sequences contained within a longer defined sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JE, Ptashne M, Harrison SC (1987) Structure of the repressor-operator complex of bacteriophage 434. Nature 326:846–852

    Article  PubMed  CAS  Google Scholar 

  • Buc H (1986) Mechanism of activation of transcription by the complex formed between cyclic AMP and its receptor in E. coli. Biochem Soc Trans 14:1 96-199

    Google Scholar 

  • Buc H (1987) Initiation of prokaryotic transcription — kinetic and structural approaches. Nucl Acids Mol Biol 1:186–195

    Google Scholar 

  • Burkhoff AM, Tullius TD (1987) The unusual conformation adopted by the adenine tracts in kinetoplast DNA. Cell 48:935–943

    Article  PubMed  CAS  Google Scholar 

  • Calladine CR, Drew HR (1986) The principles of sequence-dependent flexure of DNA. J Mol Biol 192:907–918

    Article  PubMed  CAS  Google Scholar 

  • Diekmann S (1987) DNA curvature. Nucl Acids Mol Biol 1:138–156

    Google Scholar 

  • Drew HR, Travers AA (1984) DNA structural variations in the E. coli tyrT promoter. Cell 37:491–502

    Article  PubMed  CAS  Google Scholar 

  • Drew HR, Travers AA (1985) DNA bending and its relation to nucleosome positioning. J Mol Biol 186:773–790

    Article  PubMed  CAS  Google Scholar 

  • Drew HR, Weeks JR, Travers AA (1985) Negative supercoiling induces spontaneous unwinding of a bacterial promoter. EMBO J 4:1025–1032

    PubMed  CAS  Google Scholar 

  • Fratini AV, Kopka ML, Drew HR, Dickerson RE (1982) Reversible bending and helix geometry in a B-DNA dodecamer CGCGAATBrCGCG. J Biol Chem 257:14686–14707

    PubMed  CAS  Google Scholar 

  • Groneborn AM, Nermut MV, Eason P, Clore GM (1984) Visualisation of cAMP receptor protein-induced DNA kinking by electron microscopy. J Mol Biol 179:751–757

    Article  Google Scholar 

  • Hagerman PJ (1984) Evidence for the existence of stable curvature of DNA in solution. Proc Natl Acad Sci USA 81:4632–4636

    Article  PubMed  CAS  Google Scholar 

  • Hawley D, McClure WR (1983) Compilation and analysis of Escherichia coli promoter DNA sequences. Nucl Acids Res 11:2237–2255

    Article  PubMed  CAS  Google Scholar 

  • Koo H-S, Wu H-M, Crothers DM(1986) DNA bending at adenine-thymine tracts. Nature 320:501–506

    Article  PubMed  CAS  Google Scholar 

  • Kotlarz D, Fritsch A, Bue H (1986) Variation of intramolecular ligation rates allow the detection of protein-induced bends in DNA. EMBO J 5:799–803

    PubMed  CAS  Google Scholar 

  • Koudelka GB, Harrison SC, Ptashne M (1987) Effect of non-contacted bases or the affinity of 434 repressor for 434 repressor and Cro. Nature 325:886–888

    Article  Google Scholar 

  • Kuhnke G, Fritz HJ, Ehring R (1987) Unusual properties of promoter-up mutations in the Escherichia coli galactose operon and evidence suggesting RNA polymerase-in-duced DNA bending. EMBO J 6:507–513

    PubMed  CAS  Google Scholar 

  • Lilley DMJ (1986) DNA structure: Bent molecules-how and why? Nature 320:487

    Article  PubMed  CAS  Google Scholar 

  • Liu-Johnson H-N, Gartenberg MR, Crothers DM (1986) The DNA binding domain and bending angle of E. coli CAP protein. Cell 47:995–1005

    Article  PubMed  CAS  Google Scholar 

  • Lutter LC (1979) Precise location of DNasel cutting sites in the nucleosome core determined by high resolution gel electrophoresis. Nucl Acids Res 6:41–56

    Article  PubMed  CAS  Google Scholar 

  • McCall M, Brown T, Kennard O (1986) The crystal structure of d(GGGGCCCC). A model for poly(dG) •poly(dC). J Mol Biol 183:385–396

    Article  Google Scholar 

  • Nelson HCM, Finch JT, Luisi BF, Klug A (1987) The structure of an oligo-(dA) •oligo-(dT) tract and its biological implications. Nature 330:221–226

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D (1979) Nucleosome cores reconstituted from poly(dA-dT) and the octamer of histones. Nucl Acids Res 6:1805–1816

    Article  PubMed  CAS  Google Scholar 

  • Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A (1984) Structure of the nucleosome core particle at 7 Å resolution. Nature 311:532–537

    Article  PubMed  CAS  Google Scholar 

  • Satchwell SC, Drew HR, Travers AA (1986) Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 191:659–675

    Article  PubMed  CAS  Google Scholar 

  • Simpson RT, Kunzler P (1979) Chromatin and core particles formed from the inner histones and synthetic polydeoxyribonucleotides of defined sequence. Nucl Acids Res 6:1387–1485

    Article  PubMed  CAS  Google Scholar 

  • Travers AA (1986) DNA structure and promoter function. Biochem Soc Trans 14:199–200

    PubMed  CAS  Google Scholar 

  • Travers AA, Klug A (1987) The bending of DNA in nucleosomes and its wider implication. Philos Trans Roy Soc B 317:537–561

    Article  CAS  Google Scholar 

  • Trifonov EN (1985) Curved DNA. CRC Crit Rev Biochem 19:89–106

    Article  PubMed  CAS  Google Scholar 

  • Trifonov EN, Sussman JC (1980) The pitch of chromatin DNA is reflected in its nu-cleotide sequence, Proc Natl Acad Sci USA 77:3816–3820

    Article  PubMed  CAS  Google Scholar 

  • Ulanovsky LE, Trifonov EN (1987) Estimation of wedge components in curved DNA. Nature 326:720–722

    Article  PubMed  CAS  Google Scholar 

  • Widom J (1985) Bent DNA for gene regulation and DNA packaging. Bioessays 2:11–14

    Article  CAS  Google Scholar 

  • Wu H-M, Crothers DM (1984) The locus of sequence directed and protein-induced DNA bending. Nature 308:509–513

    Article  PubMed  CAS  Google Scholar 

  • Zahn K, Blattner FR (1987) Evidence for DNA bending at the X replication origin. Science 236:416–422

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Travers, A.A. (1988). Protein-Induced DNA Bending. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83384-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83384-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83386-1

  • Online ISBN: 978-3-642-83384-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics