Skip to main content

Optimal Projection for Uncertain Systems (OPUS): A Unified Theory of Reduced-Order, Robust Control Design

  • Chapter
Large Space Structures: Dynamics and Control

Part of the book series: Springer Series in Computational Mechanics ((SSCMECH))

Abstract

OPUS (Optimal Projection for Uncertain Systems) provides new machinery for designing active controllers for suppressing vibration in flexible structures. The purpose of this paper is to review this machinery and demonstrate its practical value in addressing the structural control problem.

This research was supported in part by the Air Force Office of Scientific Research under contracts F49620-86-C-0002 and F49620-86-C-0038.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. Y. Liu and B. D. O. Anderson, “Controller Reduction Via Stable Factorization and Balancing, ” Int. J. Contr. Vol. 44. pp. 507–531. 1986.

    Article  MATH  Google Scholar 

  2. G. Zames, “Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Serainorms, and Approximate Inverses,” IEEE Trans. Autom. Contr., Vol. AC-26. pp. 301–320, 1981.

    Article  MathSciNet  Google Scholar 

  3. J. C. Doyle, “Guaranteed Margins for LQG Regulators,” IEEE Trans. Autom. Contr., Vol. AC-23. pp. 756–757, 1978.

    Article  Google Scholar 

  4. J. C. Doyle and G. Stein, “Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis,” IEEE Trans. Autom. Contr., Vol. AC-26, pp. 4–16, 1981.

    Article  Google Scholar 

  5. G. Stein and M. Athans, “The LQG/LTR Procedure for Multivariable Feedback Control Design,” IEEE Trans. Autom. Contr., Vol. AC-32, pp. 105–114, 1987.

    Article  Google Scholar 

  6. E. Soroka and U. Shaked, “On the Robustness of LQ Regulators,” IEEE Trans. Autom. Contr., Vol. AC-29, pp. 664–665, 1984.

    Article  Google Scholar 

  7. U. Shaked and E. Soroka, “On the Stability Robustness of the Continuous-Time LQG Optimal Control,” IEEE Trans. Autom. Contr., Vol. AC-30. 1039–1043.

    Google Scholar 

  8. J. C. Doyle, “Analysis of Feedback Systems with Structured Uncertainties,” IEE Proc., Vol. 129. pp. 242–250, 1982.

    MathSciNet  Google Scholar 

  9. S. S. L. Chang and T. K. C. Peng, “Adaptive Guaranteed Cost Control of Systems with Uncertain Parameters,” IEEE Trans. Autom. Contr., Vol. AC-17, pp. 474–483. 1972.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Vinkler and L. J. Wood. “Multistep Guaranteed Cost Control of Linear Systems with Uncertain Parameters,” J. Guid. Contr., Vol. 2, pp. 449–456, 1979.

    Article  MATH  Google Scholar 

  11. I. R. Petersen and C. V. Hollot, “A Riccati Equation Approach to the Stabilization of Uncertain Systems,” Automatica, Vol. 22, pp. 433–448. 1986.

    Article  MathSciNet  Google Scholar 

  12. D. Hinrichsen and A. J. Pritchard, “Stability Radius for Structured Perturbations and the Algebraic Riccati Equation,” Sys. Contr. Lett., Vol. 8, pp. 105–113. 1986.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. D. O. Anderson and J. B. Moore, Linear Optimal Control, Prentice-Hall, Englewood Cliffs, NJ. 1970.

    Google Scholar 

  14. G. N. Milstein, “Design of Stabilizing Controller with Incomplete State Data for Linear Stochastic System with Multiplicative Noise,” Autom. Remote Contr., Vol. 43. pp. 653–659, 1982.

    Google Scholar 

  15. G. A. Adamian and J. S. Gibson, “Sensitivity of Closed-Loop Eigenvalues and Robustness.” preprint.

    Google Scholar 

  16. A. M. Ostrowski, “On Some Metrical Properties of Operator Matrices and Matrices Partitioned into Blocks,” J. Math. Anal. Appl., Vol. 2. pp. 161–209. 1961.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Dahlquist. “On Matrix Majorants and Minorants, with Applications to Differential Equations,” Lin. Alg. Appl., Vol. 52/53. pp. 199–216. 1983.

    MathSciNet  Google Scholar 

  18. D. D. Siljak. Large-Scale Dynamic Systems, Elsevier/North-Holland, 1978.

    Google Scholar 

  19. M. Ikeda and D. D. Siljak, “Generalized Decompositions of Dynamic Systems and Vector Lyapunov Functions,” IEEE Trans. Autom. Contr., Vol. AC-26, pp. 1118–1125, 1981.

    Article  MathSciNet  Google Scholar 

  20. A. Gruzen, “Robust Reduced Order Control of Flexible Structures,” C. S. Draper Laboratory Report tfCSDL-T-900, April 1986.

    Google Scholar 

  21. A. Gruzen and W. E, Vander Velde, “Robust Reduced-Order Control of Flexible Structures Using the Optimal Project ion/Maximum Entropy Design Methodology,” AIAA Guid. Nav. Contr. Conf., Williamsburg, VA, August 1986.

    Google Scholar 

  22. A. Yousuff and R. E. Skelton, “Controller Reduction by Component Cost Analysis,” IEEE Trans. Autom. Contr., Vol. AC-24, pp. 520–530, 1984.

    Article  Google Scholar 

  23. S. Richter and R. DeCarlo, “Continuation Methods: Theory and Applications,” IEEE Trans. Autom. Contr., Vol. 28, pp. 660–665, 1983.

    Article  MathSciNet  Google Scholar 

OPUS References

  1. D. C. Hyland, “The Modal Coordinate/Radiative Transfer Formulation of Structural Dynamics—Implications for Vibration Suppression in Large Space Platforms,” MIT Lincoln Laboratory, TR-27, 14 March 1979.

    Google Scholar 

  2. D. C. Hyland, “Optimal Regulation of Structural Systems With Uncertain Parameters,” MIT Lincoln Laboratory, TR-551, 2 February 1981, DDC# AD-A099111/7.

    Google Scholar 

  3. D. C. Hyland, “Active Control of Large Flexible Spacecraft: A New Design Approach Based on Minimum Information Modelling of Parameter Uncertainties,” Proc. Third VPI&SU/AIAA Symposium, pp. 631-646, Blacksburg, VA, June 1981.

    Google Scholar 

  4. D. C. Hyland, “Optimal Regulator Design Using Minimum Information Modelling of Parameter Uncertainties: Ramifications of the New Design Approach,” Proc. Third VPI&SU/AIAA Symposium, pp. 701-716, Blacksburg, VA, June 1981.

    Google Scholar 

  5. D. C. Hyland and A. N. Madiwale, “Minimum Information Approach to Regulator Design: Numerical Methods and Illustrative Results,” Proc. Third VPI&SU/AIAA Symposium, pp. 101-118, Blacksburg, VA, June 1981.

    Google Scholar 

  6. D. C. Hyland and A. N. Madiwale, “A Stochastic Design Approach for Full-Order Compensation of Structural Systems with Uncertain Parameters,” Proc. AIAA Guid. Contr. Conf., pp. 324-332, Albuquerque, NM, August 1981.

    Google Scholar 

  7. D. C. Hyland, “Optimality Conditions for Fixed-Order Dynamic Compensation of Flexible Spacecraft with Uncertain Parameters,” AIAA 20th Aerospace Sciences Meeting, paper 82-0312, Orlando, FL, January 1982.

    Google Scholar 

  8. D. C. Hyland, “Structural Modeling and Control Design Under Incomplete Parameter Information: The Maximum Entropy Approach,” AFOSR/NASA Workshop in Modeling, Analysis and Optimization Issues for Large Space Structures, Williamsburg, VA, May 1982.

    Google Scholar 

  9. D. C. Hyland, “Minimum Information Stochastic Modelling of Linear Systems with a Class of Parameter Uncertainties,” Proc. Amer. Contr. Conf., pp. 620-627, Arlington, VA, June 1982.

    Google Scholar 

  10. D. C. Hyland, “Maximum Entropy Stochastic Approach to Control Design for Uncertain Structural Systems,” Proc. Amer. Contr. Conf., pp. 680-688, Arlington, VA, June 1982.

    Google Scholar 

  11. D. C. Hyland, “Minimum Information Modeling of Structural Systems with Uncertain Parameters,” Proceedings of the Workshop on Applications of Distributed System Theory to the Control of Large Space Structures, G. Rodriguez, ed., pp. 71-88, JPL, Pasadena, CA, July 1982.

    Google Scholar 

  12. D. C. Hyland and A. N. Madiwale, “Fixed-Order Dynamic Compensation Through Optimal Projection,” Proceedings of the Workshop on Applications of Distributed System Theory to the Control of Large Space Structures, G. Rodriguez, ed., pp. 409-427, JPL, Pasadena, CA, July 1982.

    Google Scholar 

  13. D. C. Hyland, “Mean-Square Optimal Fixed-Order Compensation—Beyond Spillover Suppression,” paper 1403, AIAA Astrodynamics Conference, San Diego, CA, August 1982.

    Google Scholar 

  14. D. C. Hyland, “The Optimal Projection Approach to Fixed-Order Compensation: Numerical Methods and Illustrative Results,” AIAA 21st Aerospace Sciences Meeting, paper 83-0303, Reno, NV, January 1983.

    Google Scholar 

  15. D. C. Hyland, “Mean-Square Optimal, Full-Order Compensation of Structural Systems with Uncertain Parameters,” MIT Lincoln Laboratory, TR-626, 1 June 1983.

    Google Scholar 

  16. D. C. Hyland, “Comparison of Various Controller-Reduction Methods: Suboptimal Versus Optimal Projection,” Proc. AIAA Dynamics Specialists Conf., pp. 381-389. Palm Springs, CA. May 1984.

    Google Scholar 

  17. D. C. Hyland and D. S. Bernstein, “The Optimal Projection Equations for Fixed-Order Dynamic Compensation,” IEEE Trans. Autom. Contr., Vol. AC-29, pp. 1034–1037, 1984.

    Article  MathSciNet  Google Scholar 

  18. D. C. Hyland, “Application of the Maximum Entropy/Optimal Projection Control Design Approach for Large Space Structures,” Proc. Large Space Antenna Systems Technology Conference, pp. 617-654, NASA Langley. December 1984.

    Google Scholar 

  19. L. D. Davis, D. C. Hyland and D. S. Bernstein, “Application of the Maximum Entropy Design Approach to the Spacecraft Control Laboratory Experiment (SCOLE),” Final Report, NASA Langley, January 1985.

    Google Scholar 

  20. D. S. Bernstein and D. C. Hyland, “The Optimal Projection Equations for Reduced-Order State Estimation,” IEEE Trans. Autom. Contr., Vol. AC-30, pp. 583–585, 1985.

    Article  MathSciNet  Google Scholar 

  21. D. S. Bernstein and D. C. Hyland, “Optimal Project ion/Maximum Entropy Stochastic Modelling and Reduced-Order Design Synthesis,” Proc. IFAC Workshop on Model Error Concepts and Compensation. Boston, MA, June 1985, pp. 47-54, R. E. Skelton and D. H. Owens, eds., Pergamon Press, Oxford, 1986.

    Google Scholar 

  22. D. C. Hyland and D. S. Bernstein, “The Optimal Projection Equations for Model Reduction and the Relationships Among the Methods of Wilson, Skelton and Moore,” IEEE Trans. Autom. Contr., Vol. AC-30, pp. 1201–1211, 1985.

    Article  MathSciNet  Google Scholar 

  23. D. S. Bernstein and D. C. Hyland, “The Optimal Projection/Maximum Entropy Approach to Designing Low-Order, Robust Controllers for Flexible Structures,” Proc. 24th IEEE Conf. Dec. Contr., pp. 745-752, Fort Lauderdale, FL, December 1985.

    Google Scholar 

  24. D. S. Bernstein. L. D. Davis. S. W. Greeley and D. C. Hyland. “Numerical Solution of the Optimal Projection/Maximum Entropy Design Equations for Low-Order. Robust Controller Design,” Proc. 24th IEEE Conf. Dec. Contr.. pp. 1795-1798. Fort Lauderdale, FL, December 1985.

    Google Scholar 

  25. D. S. Bernstein and D. C. Hyland, “The Optimal Projection Equations for Finite-Dimensional Fixed-Order Dynamic Compensation of Infinite-Dimensional Systems.” SIAM J. Contr. Optim., Vol. 2A. pp. 122–151. 1986.

    Article  MathSciNet  Google Scholar 

  26. D. S. Bernstein and S. W. Greeley. “Robust Controller Synthesis Using the Maximum Entropy Design Equations,” IEEE Trans. Autom. Contr., Vol. AC-31. pp. 362–364. 1986.

    Article  Google Scholar 

  27. D. C. Hyland, D. S. Bernstein, L. D. Davis, S. W. Greeley and S. Richter, “MEOP: Maximum Entropy/Optimal Projection Stochastic Modelling and Reduced-Order Design Synthesis,” Final Report, Air Force Office of Scientific Research, Boiling AFB, Washington, DC, April 1986.

    Google Scholar 

  28. D. S. Bernstein, L. D. Davis and D. C. Hyland, “The Optimal Projection Equations for Reduced-Order, Discrete-Time Modelling, Estimation and Control,” J. Guid. Contr. Dyn., Vol. 9. pp. 288–293, 1986.

    Article  Google Scholar 

  29. D. S. Bernstein and S. VJ. Greeley, “Robust Output-Feedback Stabilization: Deterministic and Stochastic Perspectives,” Proc. Amer. Contr. Conf., pp. 1818-1826. Seattle, WA. June 1986.

    Google Scholar 

  30. D. S. Bernstein, L. D. Davis and S. VI. Greeley, “The Optimal Projection Equations for Fixed-Order, Sampled-Data Dynamic Compensation with Computation Delay,” IEEE Trans. Autom. Contr., Vol. AC-31. pp. 859–862. 1986.

    Article  Google Scholar 

  31. D. S. Bernstein, “OPUS: Optimal Projection for Uncertain Systems,” Annual Report, Air Force Office of Scientific Research, Eolling AFB, Washington, DC, October 1986.

    Google Scholar 

  32. B. J. Boan and D. C. Hyland, “The Role of Metal Matrix Composites for Vibration Suppression in Large Space Structures,” Proc. KMC Spacecraft Survivability Tech. Conf., MMCIAC Kaman Tempo Publ., Stanford Research Institute, Palo Alto, CA, October 1986.

    Google Scholar 

  33. D. C. Hyland, “An Experimental Testbed for Validation of Control Methodologies in Large Space Optical Structures,” SPIE Optoelectronics and Laser Applications Conference, Los Angeles, CA, January 1987.

    Google Scholar 

  34. W. M. Haddad and D. S. Bernstein, “The Optimal Projection Equations for Discrete-Time Reduced-Order State Estimation for Linear Systems with Multiplicative White Noise,” Sys. Contr. Lett., 1987.

    Google Scholar 

  35. D. S. Bernstein and W. M. Haddad, “The Optimal Projection Equations for Discrete-Time Fixed-Order Dynamic Compensation of Linear Systems with Multiplicative White Noise,” Int. J. Contr., 1987.

    Google Scholar 

  36. W. M. Haddad and D. S. Bernstein, “The Optimal Projection Equations for Reduced-Order State Estimation: The Singular Measurement Noise Case,” IEEE Trans. Autom. Contr., 1987.

    Google Scholar 

  37. D. S. Bernstein, “The Optimal Projection Equations for Static and Dynamic Output Feedback: The Singular Case,” IEEE Trans. Autom. Contr., 1987.

    Google Scholar 

  38. D. S. Bernstein and D. C. Hyland, “The Optimal Projection Equations for Reduced-Order Modelling, Estimation and Control of Linear Systems with Multiplicative White Noise,” J. Opt im. Thy. Appl., 1987.

    Google Scholar 

  39. D. S. Bernstein, “Sequential Design of Decentralized Dynamic Compensators Using the Optimal Projection Equations,” Int. J. Contr., 1987.

    Google Scholar 

  40. D. S. Bernstein and W. M. Haddad, “Optimal Output Feedback for Nonzero Set Point Regulation,” Proc. Amer. Contr. Conf., Minneapolis, MN, June 1987.

    Google Scholar 

  41. D. S. Bernstein, “Robust Static and Dynamic Output-Feedback Stabilization: Deterministic and Stochastic Perspectives,” IKEE Trans. Autom. Contr., 1987.

    Google Scholar 

  42. D. C. Hyland and D. S. Bernstein, “The Majorant Lyapunov Equation: A Nonnegative Matrix Equation for Guaranteed Robust Stability and Performance of Large Scale Systems,” IEEE Trans. Autom. Contr., 1987.

    Google Scholar 

  43. D. S. Bernstein and W. M. Haddad, “The Optimal Projection Equations with Petersen-Hollot Bounds: Robust Controller Synthesis with Guaranteed Structured Stability Radius,” submitted.

    Google Scholar 

  44. S. W. Greeley and D. C. Hyland, “Reduced-Order Compensation: LQG Reduction Versus Optimal Projection,” submitted.

    Google Scholar 

  45. W. M. Haddad, Robust Optimal Projection Control-System Synthesis, Ph.D. Dissertation, Department of Mechanical Engineering, Florida Institute of Technology, Melbourne, FL, March 1987.

    Google Scholar 

  46. S. Richter, “A Homotopy Algorithm for Solving the Optimal Projection Equations for Fixed-Order Dynamic Compensation: Existence, Convergence and Global Optimality,” Proc. Amer. Contr. Conf., Minneapolis, MN, June 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bernstein, D.S., Hyland, D.C. (1988). Optimal Projection for Uncertain Systems (OPUS): A Unified Theory of Reduced-Order, Robust Control Design. In: Atluri, S.N., Amos, A.K. (eds) Large Space Structures: Dynamics and Control. Springer Series in Computational Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83376-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83376-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83378-6

  • Online ISBN: 978-3-642-83376-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics