Skip to main content

Dehydration and Rehydration During Pollen Development, Pollination, and Fertilization

  • Chapter
Gases in Plant and Microbial Cells

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 9))

  • 310 Accesses

Abstract

Sexual reproduction in plants involves some of the most dramatic developmental changes that plants ever undergo. Meiosis itself brings about enormous ultrastructural changes within the cell, the microspores so formed divide into generative and vegetative cells. These are both contained in the pollen grains that subsequently develop. The development of the pollen grain involves considerable loss of water vapor, so that by anthesis when pollen is finally shed the water content of the pollen may be as low as 9% and rarely more than 60%, depending on the species. Grass pollens normally have a higher water content at maturity than the pollen from most dicotyledonous plants. An exception is the pollen from sea grasses, which, because of the aqueous environment in their habitat, do not suffer the dehydration seen in the land plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Banerjee VC, Rowley JR, Alessio ML (1965) Exine plasticity during pollen grain maturation. J Palynol 1: 70–89

    Google Scholar 

  • Bottomley PA, Rogers HH, Foster TH (1986) NMR imaging shows water distribution and transport in plant root systems in situ. Proc Natl Acad Sci USA 83: 87–89

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218: 443–448

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS, Knipling EB (1965) Isopiestic technique for measuring leaf water potentials with a thermocouple psychrometer. Proc Natl Acad Sci USA 54: 1044–1052

    Article  Google Scholar 

  • Cohen JS (ed) (1983) Magnetic resonance in biology, vol 2. Wiley, New York

    Google Scholar 

  • Dumas C, Knox RB, Gaude T (1984) Pollen recognition:new concepts from electron microscopy and cytochemistry. Int Rev Cytol 90: 239–272

    Article  CAS  Google Scholar 

  • Escaig J, Nicolas G (1976) Cryo-fractures de material biologique realisees a tres basses temperatures en ultravide. C R Acad Sci 283: 1245–1248

    CAS  Google Scholar 

  • Favre-Duchartre M (1963) Structure of cycad pollen. Ann Sci Nat Bot 12th Ser 5: 233–239

    Google Scholar 

  • Gay G, Kerhoas C, Dumas C (1987) Quality of a stress-sensitive Cucurbita pepo L. pollen. Planta 171: 82–87

    Article  Google Scholar 

  • Geitler L (1942) State of hydration influences division of sperm cells in pollen. Planta 32: 187–195

    Article  Google Scholar 

  • Gilissen LJW (1977) The influence of relative humidity on the swelling of pollen grains in vitro. Planta 137: 299–301

    Article  Google Scholar 

  • Gould GW (1983) Resistance and dormancy of bacterial endospores. In:Hurst A, Gould GW (eds) The bacterial spore, vol 2. Academic Press, New York London, p 173

    Google Scholar 

  • Heslop-Harrison J (1975) Physiology of the pollen-grain surface. Proc R Soc London Ser B 190: 275–300

    Article  CAS  Google Scholar 

  • Heslop-Harrison J (1978) Cellular recognition systems in plants. Studies in biology, 100, Arnold, London

    Google Scholar 

  • Heslop-Harrison J (1979 a) Pollen walls as adaptive systems. Ann MO Bot Gard 66: 813–829

    Article  Google Scholar 

  • Heslop-Harrison J (1979 b) Aspects of the structure, cytochemistry, and germination of the pollen of rye (Secale cereale L.). Ann Bot Suppl 1: 1–47

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1970) Evaluation of pollen viability by enzymati-cally induced fluorescence, intracellular hydrolysis of fluorescein diacetate. Stain Tech-nol 45: 115–120

    CAS  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1980) Cytochemistry and function of the Zwischenkörper in grass pollen. Pollen Spores 22: 5–10

    Google Scholar 

  • Hinshaw WS (1976) NMR images of whole fruit. J Appl Phys 47: 3709

    Article  Google Scholar 

  • Jackson JF (1987) DNA repair in pollen — a review. Mutat Res 181: 17–29

    Article  CAS  Google Scholar 

  • Jackson JF, Linskens HF (1978) Evidence for DNA repair after ultraviolet irradiation of Petunia hybrida pollen. Mol Gen Genet 161: 117–120

    CAS  Google Scholar 

  • Jackson JF, Linskens HF (1979) Pollen DNA repair after treatment with the mutagens 4-nitroquinoline-1-oxide, ultraviolet and near-ultraviolet irradiation, and boron dependence of repair. Mol Gen Genet 176: 11–16

    Article  CAS  Google Scholar 

  • Jackson JF, Linskens HF (1980) DNA repair in pollen:range of mutagens inducing repair, effect of replication inhibitors and changes in thymidine nucleotide metabolism, during repair. Mol Gen Genet 180: 517–522

    Article  CAS  Google Scholar 

  • Jackson JF, Linskens HF (1982) Metal ion induced unscheduled DNA synthesis in Petunia pollen. Mol Gen Genet 187: 112–115

    Article  CAS  Google Scholar 

  • Johnson GA, Brown J, Kramer PJ (1987) Magnetic resonance microscopy of changes in water content in stems of transpiring plants. Proc Natl Acad Sci USA 84: 2752–2755

    Article  PubMed  CAS  Google Scholar 

  • Kaku S, Iwayainove M, Gusta LV (1984) Relationship of nuclear magnetic resonance relaxation time to water content and cold hardiness in flower buds of evergreen azalea. Plant Cell Physiol 25: 875–882

    Google Scholar 

  • Kerhoas C, Dumas C (1986) Nuclear magnetic resonance and pollen quality. In:Linskens HF, Jackson JF (eds) Modern methods of plant analysis, New Series, vol 2. Springer, Berlin Heidelberg New York, pp 169–190

    Google Scholar 

  • Kerhoas C, Gay G, Dumas C (1987) A multidisciplinary approach to the study of the plasma membrane of Zea mays pollen during controlled dehydration. Planta 171: 1–10

    Article  Google Scholar 

  • Knox RB (1984) The pollen grain. In:Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York, pp 212–215

    Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions:examples employing nuclear magnetic resonance. Nature 242: 190–191

    Article  CAS  Google Scholar 

  • Lauterbur PC (1974) Nuclear magnetic imaging of fruits. Pure Appl Chem 40: 149–155

    Article  CAS  Google Scholar 

  • Lee C-H, Mizusawa H, Kapepuda T (1981) Unwinding of double-stranded DNA helix by dehydration. Proc Natl Acad Sci USA 78: 2838–2842

    Article  PubMed  CAS  Google Scholar 

  • Linskens HF (1982) Pollen collection during a balloon trip. Incompat Newslett 14: 116–121

    Google Scholar 

  • Mansfield P, Pykett IL (1978) Biological and medical imaging by NMR. J Magn Reson 29: 355–360

    Article  Google Scholar 

  • Omasa K, Onoe M, Yamada H (1985) Nuclear magnetic imaging of intact plants. Environ Control Biol 23: 99–102

    Article  Google Scholar 

  • Poddubnaya-Arnoldi VA (1936) Water availability effects division of sperm cells in pollen grains. Planta 25: 502–510

    Article  Google Scholar 

  • Priestly DA, DeKruijff B (1982) Phospholipid motional characteristics in a dry biological system. A 31P-nuclear magnetic resonance study of hydrating Typha latifolia pollen. Plant Physiol 70: 1075–1078

    Article  Google Scholar 

  • Richards LA, Oagata G (1958) Thermocouple for vapor pressure measurement in biological and soil systems at high humidity. Science 128: 1089–1090

    Article  PubMed  CAS  Google Scholar 

  • Saenger W, Hunter WN, Kennard O (1986) DNA conformation is determined by economics in the hydration of phosphate groups. Nature 324: 385–388

    Article  PubMed  CAS  Google Scholar 

  • Schoper JB, Lambert RJ, Vasilas BL (1986) Maize pollen viability and ear receptivity under water and temperature stress. Crop Sci 26: 1029–1033

    Article  Google Scholar 

  • Setlow B, Setlow P (1987) Thymine-containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins. Proc Natl Acad Sci USA 84: 421–423

    Article  PubMed  CAS  Google Scholar 

  • Shivanna KR, Heslop-Harrison J (1981) Membrane state and pollen viability. Ann Bot 47: 759–770

    Google Scholar 

  • Smith KC, Hanawalt PC (1969) Molecular photobiology. Academic Press, New York London

    Google Scholar 

  • Spanner DC (1951) Thermocouple psychrometer for leaf water potential. J Exp Bot 2: 145–149

    Article  CAS  Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen biology, biochemistry, management. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Varghese AJ (1970) 5-Thyminyl-5,6-dihydrothymine from DNA irradiated with ultraviolet light. Biochem Biophys Res Commun 38: 484–490

    Article  PubMed  CAS  Google Scholar 

  • Vijayaraghavan MR, Bhatia K (1985) Cellular changes during microsporogenesis, vegetative and generative cell formation:a review based on ultrastructure and histochemistry. Int Rev Cytol 96: 263

    Article  CAS  Google Scholar 

  • Vithanage HIMV, Knox RB (1980) Periodicity of pollen development and quantitative cytochemistry of exine and intine enzymes in the grasses Lolium perenne and Phalaris tuberosa. Ann Bot 45: 131–142

    CAS  Google Scholar 

  • Wang AHJ, Fujii S, Boom JH van, Rich A (1983) Right-handed and left-handed double-helical DNA:structural studies. In:Watson JD, Owen D, Brown D (eds) Structure of DNA. Cold Spring Harbor Symp Quant Biol 47: 33–34

    Google Scholar 

  • Westgate ME, Boyer JS (1986 a) Reproduction at low silk and pollen water potentials in maize. Crop Sci 26: 951–956

    Article  Google Scholar 

  • Westgate ME, Boyer JS (1986 b) Silk and pollen water potentials in maize. Crop Sci 26: 947–951

    Article  Google Scholar 

  • Willemse MTM, Reznickov SA (1980) Formation of pollen in the anther of Lilium. Development of the pollen wall. Acta Bot Neerl 29: 127–140

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jackson, J.F. (1989). Dehydration and Rehydration During Pollen Development, Pollination, and Fertilization. In: Linskens, HF., Jackson, J.F. (eds) Gases in Plant and Microbial Cells. Modern Methods of Plant Analysis, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83346-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83346-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83348-9

  • Online ISBN: 978-3-642-83346-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics