Advertisement

Analysis of Black Tea Volatiles

  • P. Schreier
Part of the Modern Methods of Plant Analysis book series (MOLMETHPLANT, volume 8)

Abstract

Tea was used in China before 2000 B.C. as a medicine, because of its physiological effect. Nowadays, tea is one of the most widely consumed beverages in the world, and its popularity consists certainly in its pleasant flavor combined with its stimulating effects.

Keywords

Furfuryl Alcohol Linalool Oxide Aroma Constituent Terpinyl Acetate Fenchyl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aisaka H, Kosuge M, Yamanishi T (1978) Comparison of Chinese “Keemum” black tea and Ceylon black tea. Agric Biol Chem 42:2157–2159CrossRefGoogle Scholar
  2. Blanc M (1972) Les caroténoides du thé. Distribution et variations au cours de traitements technologiques. Lebensm Wiss Technol 5:95–97Google Scholar
  3. Bondarovich HA, Giammerino AS, Renner JA, Shephard FW, Shingler AJ, Gianturco MA (1967) Some aspects of the chemistry of tea. A contribution to the knowledge of the volatile constituents. J Agric Food Chem 15:36–47CrossRefGoogle Scholar
  4. Brandenberger H, Müller S (1962) A gaschromatographic separation of volatile fatty acids of black tea. J Chromatogr 7:137–141CrossRefGoogle Scholar
  5. Bricout J, Viani R, Müggler-Chavan F, Marion J, Reymond D, Egli R (1967) Sur la composition de l’aróme du thé noir (2). Helv Chim Acta 50:1517–1522CrossRefGoogle Scholar
  6. Cazenave P, Horman I (1974) Sur la composition de thé noir (5). Helv Chim Acta 57:209–211CrossRefGoogle Scholar
  7. Cazenave P, Horman I, Müggler-Chavan F, Viani R (1974) Sur la composition de l’aróme de thé noir (4). Helv Chim Acta 57:206–209CrossRefGoogle Scholar
  8. Chang S, Peterson R (1977) Recent developments in the flavor of meat. J Food Sci 42:298–305CrossRefGoogle Scholar
  9. Cloughley J, Ellis R, Pendlington S, Humphrey P (1982) Volatile constituents of some central African black tea clones. J Agric Food Chem 30:842–845CrossRefGoogle Scholar
  10. Coenen H, Eggers R, Kriegel E (1982) Die Trennung von Stoffgemischen mit überkritischen Gasen. Chemie Technik 11:1199–1205Google Scholar
  11. Croteau R (1980) The biosynthesis of terpene compounds. In: Croteau R (ed) Fragrance and flavor substances. D & PS, Pattensen, p 13Google Scholar
  12. Eden T (1976) Tea, 3rd edn. Longman, LondonGoogle Scholar
  13. Engel KH, Tressl R (1983) Formation of aroma components from nonvolatile precursors in passion fruit. J Agric Food Chem 31:998–1002CrossRefGoogle Scholar
  14. Folkes D, Gramshaw J (1977) Volatile constituents of white bread crust. J Food Technol 12:1–8CrossRefGoogle Scholar
  15. Forney F, Markovetz AJ (1971) Biology of methyl ketones. J Lipid Res 12:383–395PubMedGoogle Scholar
  16. Forss DA (1969) Role of lipids in flavors. J Agric Food Chem 17:681–686CrossRefGoogle Scholar
  17. Galliard T (1978) Lipolytic and lipoxygenäse enzymes in plants and their action in wounded tissues. In: Kahl G (ed) Biochemistry of wounded plant tissues, de Gruyter, Berlin, New York, p 155Google Scholar
  18. Gianturco MA, Biggers RE, Ridling BH (1974) Seasonal variations in the composition of volatile constituents of black tea. A numerical approach to the correlation between composition and quality of tea aroma. J Agric Food Chem 22:758–764CrossRefGoogle Scholar
  19. Gogiya VT, Tkeshelasvili CF (1972) Phenols of the essential oil of tea. Prikl Biokhim Mik-robiol 8:600–603Google Scholar
  20. Grimmett C (1981) The use of liquid carbon dioxide for extracting natural products. Chem Ind 359–382Google Scholar
  21. Grosch W (1982) Lipid degradation products and flavours. In: Morton ID, MacLeod AJ (eds) Food flavours. Part A — Introduction. Elsevier, Amsterdam, p 325Google Scholar
  22. Hatanaka A, Harada T (1972) Purification and properties of alcohol dehydrogenase from tea seed. Agric Biol Chem 36:2033–2035CrossRefGoogle Scholar
  23. Hatanaka A, Harada T (1973) Formation of cis-3-hexenal, tr-2-hexenal and cis-3-hexenol in macerated Thea sinensis leaves. Phytochemistry 12:2341–2346CrossRefGoogle Scholar
  24. Hatanaka A, Kajiwara T (1981) Occurrence of (E)-3-hexenal in Thea sinensis leaves. Z Na-turforsch 36B:755-758Google Scholar
  25. Hatanaka A, Sekiya J, Kajiwara T, Miura T (1979 a) Further characterization of the enzyme system producing C-6-aldehydes from C-18-unsaturated fatty acids in tea chlo-roplasts. Agric Biol Chem 43:735–737CrossRefGoogle Scholar
  26. Hatanaka A, Kajiwara T, Sekiya J, Fujimura KI (1979 b) Participation of 13-hydroperoxid in the formation of hexanal from linoleic acid in tea chloroplasts. Agric Biol Chem 43:175–177CrossRefGoogle Scholar
  27. Hatanaka A, Kajiwara T, Koda T (1979 c) Specificity of enzyme system producing C-6-aldehydes in tea chloroplasts. Agric Biol Chem 43:2115–2116CrossRefGoogle Scholar
  28. Heins JT, Maarse H, Ten Noever de Brauw MC, Weurman C (1966) Direct food vapour analysis and component identification by a coupled capillary GLC-MS arrangement. J Gas Chromatogr 4:395–397Google Scholar
  29. Howard GE (1979) The volatile constituents of tea. Food Chem 4:97–106CrossRefGoogle Scholar
  30. Ina K, Eto H (1971) 3-keto-β-ionone in the essential oil from black tea. Agric Biol Chem 35:962–963CrossRefGoogle Scholar
  31. Ina K, Eto H (1972) High boiling compounds of neutral essential oil from tea. Agric Biol Chem 36:1027–1032CrossRefGoogle Scholar
  32. Ina K, Sakato Y, Fukami M (1968) Isolation and structure elucidation of theaspirone, a component of tea essential oil. Tetrahedron Lett 23:2777–2780PubMedCrossRefGoogle Scholar
  33. Isoe S, Hyeon S, Sakan T (1969) Photooxygenation of carotenoids. The formation of di-hydroactinidiolide and β-ionone from β-carotene. Tetrahedron Lett 4:279–280CrossRefGoogle Scholar
  34. Kakjiwara T, Harada T, Hatanaka A (1975) Isolation of (Z)-2-hexenol in the leaves of “Thea sinensis” and synthesis thereof. Agric Biol Chem 39:243–244CrossRefGoogle Scholar
  35. Kato H, Fujimaki M (1968) Formation of N-substituted pyrrole-2-aldehydes in the browning reactions between D-xylose and amino compounds. J Food Sci 33:445–449CrossRefGoogle Scholar
  36. Kawashima K, Yamanishi T (1973) Thermal degradation of β-carotene. Nippon Nogei Kagaku Kaishi 47:79–83CrossRefGoogle Scholar
  37. Kobayashi A, Sato H, Yamanishi T (1965 a) cis-2-Penten-2-ol in the essential oil from freshly plucked tea leaves and black tea. Agric Biol Chem 29:488–489CrossRefGoogle Scholar
  38. Kobayashi A, Sato H, Arikawa R, Yamanishi T (1965 b) Flavor of black tea. I. Volatile organic acids. Agric Biol Chem 29:902–907CrossRefGoogle Scholar
  39. Kobayashi A, Sato H, Nakamura H, Ohsawa K, Yamanishi T (1966) Flavor of black tea. III. Newly identified alcohols and aldehydes. Agric Biol Chem 30:779–783CrossRefGoogle Scholar
  40. Lien Y, Nawar W (1974) Thermal decomposition of some amino acids. Alanine and β-ala-nine. J Food Sci 39:914–919CrossRefGoogle Scholar
  41. Maga J (1978) Simple phenols and phenolic compounds in food flavor. CRC Crit Rev Food Sci Nutrit 10:323–346CrossRefGoogle Scholar
  42. Maw G, Coyne C (1966) α-Hydroxy acids as metabolites of sulfur amino acids in yeasts. Arch Biochem Biophys 117:499–503CrossRefGoogle Scholar
  43. Mick W, Schreier P (1984) Additional volatiles of black tea aroma. J Agric Food Chem 32:924–929CrossRefGoogle Scholar
  44. Mick W, GÖtz EM, Schreier P (1984) Volatile acids of black tea aroma. Lebensm Wiss Technol 17:104–106Google Scholar
  45. Müggler-Chavan F, Viani R, Bricout J, Reymond D, Egli R (1966) Sur la composition de l’aróme de thé (1). Helv Chim Acta 49:1763–1767CrossRefGoogle Scholar
  46. Müggler-Chavan F, Viani R, Bricout J, Marion JP, Mechtler H, Reymond D, Egli R (1969) Sur la composition de l’aróme de thé (3). Identification de deux cétones apparantées aux ionones. Helv Chim Acta 52:549–550CrossRefGoogle Scholar
  47. Nakatani Y, Sato S, Yamanishi T (1969) S( + )-3,7-Dimethyl-l, 5, 7-octatrien-3-ol in the essential oil of black tea. Agric Biol Chem 33:967–968CrossRefGoogle Scholar
  48. Natarajan C, Anandaraman S, Shankaranayarana M (1974) Tea flavor. Biochem Rev 45:10–36Google Scholar
  49. Nykänen L, Suomalainen H (1983) Aroma of beer, wine and distilled beverages. Reidel DordrechtGoogle Scholar
  50. Renner E, Melcher F (1978) Untersuchungen über die Minorfettsäuren des Milchfetts. Milchwissenschaft 33:281–284Google Scholar
  51. Renold W, Näf-Müller R, Keller U, Willhalm B, Ohloff G (1974) An investigation of the tea aroma. I. New volatile black tea constituents. Helv Chim Acta 57:1301–1308CrossRefGoogle Scholar
  52. Reymond D, Müggler-Chavan F, Viani R, Vuatez L, Egli R (1966) Gas Chromatographie analysis of steam volatile aroma constituents. Application to coffee, tea and cocoa aromas. J Gas Chromatogr 4:28–31Google Scholar
  53. Saijo R (1967 a) Volatile flavor of black tea (1). Agric Biol Chem 31:389–396CrossRefGoogle Scholar
  54. Saijo R (1967 b) Volatile flavor of black tea (2). Agric Biol Chem 31:1265–1269CrossRefGoogle Scholar
  55. Saijo R, Takeo T (1970) The formation of aldehydes from amino acids by tea leaves extracts. Agric Biol Chem 34:227–233CrossRefGoogle Scholar
  56. Saijo R, Takeo T (1972) The importance of linoleic acid and linolenic acid as precursors of hexanal and tr-2-hexenal in black tea. Plant Cell Physiol 13:991–998Google Scholar
  57. Salunkhe D, Do J (1976) Biogenesis of aroma constituents of fruit and vegetable CRC Crit Rev Food Sci Nutrit 8:161–189CrossRefGoogle Scholar
  58. Sanderson GW (1972) The chemistry of tea and tea manufacturing. Rec Adv Phytochem 5:247–263Google Scholar
  59. Sanderson GW (1975) Black tea aroma and its formation. In: Drawert F (ed) Geruch-und Geschmackstoffe. Carl, Nürnberg, pp 65–72Google Scholar
  60. Sanderson GW, Co H, Gonzales J (1971) Biochemistry of tea fermentation. The role of carotenes in black tea aroma formation. J Food Sci 36:231–233CrossRefGoogle Scholar
  61. Sato S, Sasakura S, Kobayashi A, Nakatani Y, Yamanishi T (1970) Flavor of black tea. VI. Intermediate and high boiling components of the neutral fraction. Agric Biol Chem 34:1355–1367CrossRefGoogle Scholar
  62. Schreier P, Mick W (1984) Analytische Differenzierung von zwei Qualitäten schwarzen Tees mittels Kapillargaschromatographie-Massenspektrometrie. Chem Mikrobiol Technol Lebensm 8:97–104 Scif R, Casey JC, Swain T (1963) The low boiling volatiles of cooked foods. Chem Ind 863Google Scholar
  63. Shibamoto T (1977) Formation of sulfur-and nitrogen-containing components from the reaction of furfural with hydrogen sulfide and ammonia. J Agric Food Chem 25:206–209CrossRefGoogle Scholar
  64. Shibamoto T, Bernhard R (1976) Effect of time, temperature, and reactant ratio on pyrazine formation in model systems. J Agric Food Chem 24:847–851CrossRefGoogle Scholar
  65. Shibamoto T, Bernhard R (1977) Pyrazine formation in model systems. Agric Biol Chem 41:143–147CrossRefGoogle Scholar
  66. Shibamoto T, Russell G (1977) A study of the volatiles isolated from a D-glucose-hydrogen sulfide — model system. J Agric Food Chem 25:109–114CrossRefGoogle Scholar
  67. Shigematsu H, Shibata S, Kurata T, Kato H, Fujimaka M (1977) Thermal degradation products of several Amadori compounds. Agric Biol Chem 41:2377–2382CrossRefGoogle Scholar
  68. Skolbeleva NI, Petrova TA, Bokuchava MA (1977) Volatiles of black tea flavor. Soobsch Akad Nauk Gruz USSR 85:437–444Google Scholar
  69. Suyama K, Adachi S (1980) Origin of alkyl-substituted pyridines in food flavor: formation of the pyridines from the reaction of alkanals with amino acids. J Agric Food Chem 28:546–550CrossRefGoogle Scholar
  70. Takei S, Sakato Y, Ohno M (1937) Odoriferous substances from green tea. IX. Carbonyl compounds of black tea oil. Bull Inst Phys Chem Res 16:773–781Google Scholar
  71. Takei S, Sakato Y, Ohno M (1938) Odoriferous principle of green tea. IX. Primary alcohols from the oil of black tea. Bull Inst Phys Chem Res 17:871–879Google Scholar
  72. Takeo T (1981) Production of linalool and geraniol by hydrolytic breakdown of bound forms in disrupted tea shoots. Phytochemistry 20:2145–2146CrossRefGoogle Scholar
  73. Tirimanna A, Wickremasinghe R (1966) A study of the terpenes and sterols in black tea by thin layer chromatography. Tea Q 37:134–139Google Scholar
  74. Tkeshelasvili C, Gogiya V (1972) Composition of organic acids of tea volatiles. Prikl Bio-chim Mikrobiol 8:956–962Google Scholar
  75. Tressl R, Kossa T, Renner R, KÖppler H (1976) Gaschromatographisch-massenspektro-metrische Untersuchungen über die Bildung von Phenolen und aromatischen Kohlenwasserstoffen in Lebensmitteln. Z Lebensm Unters Forsch 162:123–130PubMedCrossRefGoogle Scholar
  76. Tsujimura M, Yamanishi T, Akiyama R, Tanaka S (1955) Black tea volatiles. J Agric Chem Soc Jpn 29:145–149Google Scholar
  77. Vitzthum OG, Werkhoff P (1976) Steam volatile aroma constituents of roasted coffee: neutral fraction. Z Lebensm Unters Forsch 160:277–284PubMedCrossRefGoogle Scholar
  78. Vitzthum OG, Werkhoff P (1978) Aroma analysis of coffee, tea and cocoa by headspace techniques. In: Charalambous G (ed) Analysis of foods and beverages — headspace techniques. Academic Press, London New York, p 115Google Scholar
  79. Vitzthum OG, Werkhoff P, Hubert P (1975) New volatile constituents of black tea aroma. J Agric Food Chem 23:999–1003CrossRefGoogle Scholar
  80. Wickremasinghe R (1974) The mechanism of operation of climatic factors in the biogenesis of tea flavor. Phytochemistry 13:2057–2063CrossRefGoogle Scholar
  81. Wickremasinghe R, Swain T (1965) Studies of the quality and flavour of Ceylon tea. J Sci Food Agric 16: 57–64CrossRefGoogle Scholar
  82. Wickremasinghe R, Wick E, Yamanishi T (1973) Gas chromatographic-mass spectromet-ric analysis of “flavory” and “non-flavory” Ceylon black tea aroma constituents prepared by two different methods. J Chromatogr 79:75–80PubMedCrossRefGoogle Scholar
  83. Williams P, Strauss C, Wilson B, Massy-Westropp R (1982) Studies in the hydrolysis of Vitis vinifera monoterpene precursor compounds and model monoterpene β-D-gluco-sides rationalizing the monoterpene composition of grapes. J Agric Food Chem 30:1219–1222CrossRefGoogle Scholar
  84. Yamamoto R, Itoh K (1937) Essential oil of black tea. J Agric Chem Soc Jpn 13:736–750Google Scholar
  85. Yamamoto R, Itoh K, Chin H (1940) Essential oil of Formosan black tea. J Agric Chem Soc Jpn 16:781–802Google Scholar
  86. Yamanishi T (1975) Tea aroma. Nippon Nogei Kagaku Kaishi 49:1–36CrossRefGoogle Scholar
  87. Yamanishi T (1981) Tea, coffee, cocoa, and other beverages. In: Teranishi R, Flath RA, Sugisawa H (eds) Flavor research — recent advances. Dekker, New York, p 231Google Scholar
  88. Yamanishi T, Sato H, Ohmura A (1964) Linalool epoxides in the essential oil from freshly plucked tea leaves and black tea. Agric Biol Chem 28:653–655CrossRefGoogle Scholar
  89. Yamanishi T, Kobayashi A, Sato H, Ohmura A, Nakamura H (1965) Flavor of black tea. II. Alcohols and carbonyl compounds. Agric Biol Chem 29:1016–1020CrossRefGoogle Scholar
  90. Yamanishi T, Kobayashi A, Sato H, Osawa K, Uchida A, Mori S, Saijo R (1966) Flavor of black tea aroma. IV. Changes in the flavor constituents during the manufacture of black tea. Agric Biol Chem 30:784–792CrossRefGoogle Scholar
  91. Yamanishi T, Kobayashi A, Nakamura H, Uchida A, Mori S, Osawa K, Sasakura S (1968) Flavor of black tea. V. Comparison of various types of black tea. Agric Biol Chem 32:379–386CrossRefGoogle Scholar
  92. Yamanishi T, Kita Y, Watanabe K, Nakatani Y (1972) Constituents and composition of steam volatile aroma from black tea. Agric Biol Chem 36:1153–1158CrossRefGoogle Scholar
  93. Yamanishi T, Kawatsu M, Yokoyama T, Nakatani Y (1973 a) Methyl jasmonate and lac-tones including jasmine lactone in Ceylon tea. Agric Biol Chem 37:1075–1078CrossRefGoogle Scholar
  94. Yamanishi T, Shimojo S, Ukita M, Kawashima K, Nakatani Y (1973 b) Aroma of roasted green tea (Hoji-cha). Agric Biol Chem 37:2147–2150CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • P. Schreier

There are no affiliations available

Personalised recommendations