Advertisement

Wine Analysis pp 258-275 | Cite as

The Site-Specific Natural Isotope Fractionation-NMR Method Applied to the Study of Wines

  • G. J. Martin
  • M. L. Martin
Part of the Modern Methods of Plant Analysis book series (MOLMETHPLANT, volume 6)

Abstract

Stable and radioactive isotopes are important probes for mechanistic investigations in plant physiology and numerous experiments have been designed for following the fate of a given precursor, artificially labeled with 2H or 3H, 13C or 14C, 15N etc. in the course of biosynthetic reactions (Schmidt et al. 1982; Stothers 1974; Simpson 1975; Garson and Staunton 1979; Hutchinson 1982; Simon et al. 1968). Interestingly, as regards the study of products synthetized in natural conditions, the stable isotopes present at natural abundance show themselves to be important sources of information about the history of each chemical species.

Keywords

Isotope Ratio Oxygen Isotope Ratio Isotope Content Deuterium Content Sparkling Wine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender NM (1971) Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic CO2 fixation. Phytochemistry 10:1239–1244CrossRefGoogle Scholar
  2. Bricout J (1973) Fruit and fruit products - control of authenticity of fruit juices by isotopic analysis. J Assoc Anal Chem 56:739–742Google Scholar
  3. Bricout J (1978) Recherches sur le fractionnement des isotopes stables de l’hydrogène et de l’oxygène dans quelques végétaux. Rev Cytol Biol Vég Bot 1:133–209Google Scholar
  4. Bricout J (1982) Possibilities of stable isotope analysis in the control of food products. In: Schmidt HL, Förstel H, Keinzinger K (eds) Stable isotopes. Elsevier, AmsterdamGoogle Scholar
  5. Bricout J, Fontes JC (1974) Distinction analytique entre sucre de canne et sucre de betterave. Ann Falsif Expert Chim 211–215Google Scholar
  6. Bricout J, Fontes JC, Merlivat L (1975) Sur la composition en isotopes stables de l’éthanol. Ind Aliment Agric 92:375–378Google Scholar
  7. Bricout J, Koziet J, Derbessy M, Beccat B (1981) Nouvelles possibilités de l’analyse des isotopes stables du carbone dans le contrôle de la qualité des vanilla. Ann Falsit Expert Chim 74:691–696Google Scholar
  8. Craig H (1961) Standard for reporting concentrations of deuterium and oxygen 18 in natural waters. Science 133:1833–1834PubMedCrossRefGoogle Scholar
  9. Dansgaard W (1964) Stable isotopes in precipitations. Tellus 16:435–468CrossRefGoogle Scholar
  10. Dunbar J (1982 a) A study of the factors affecting the 18O/16O ratio of the water of wine. Z Lebensm Unters Forsch 174:355–359CrossRefGoogle Scholar
  11. Dunbar J (1982 b) Detection of added water and sugar in New Zealand commercial wines. In: Schmidt HL, Förstel H, Heinzinger K (eds) Stable isotopes. Elsevier, Amsterdam, p 495Google Scholar
  12. Dunbar J (1982 c) Oxygen isotope studies on some New Zealand grape juices. Z Lebensm Unters Forsch 175:253–257CrossRefGoogle Scholar
  13. Dunbar J (1982 d) Use of 13C/12C ratios for studying the origin of CO2 in sparkling wines. Fresenius Z Anal Chem 311:578–580CrossRefGoogle Scholar
  14. Dunbar J (1982 e) The non-exchangeability of oxygen. Z Phys Chem 130:247–250Google Scholar
  15. Dunbar J, Schmidt HL (1984) Measurement of the 2H/1H ratios of the carbon-bound hydrogen atoms in sugars. Fresenius Z Anal Chem 317:853–857CrossRefGoogle Scholar
  16. Dunbar J, Schmidt HL, Woller R (1983) Möglichkeiten des Nachweises der Zuckerung von Wein über die Bestimmung von Wasserstoff-Isotopenverhältnissen. Vitis 22:375–386Google Scholar
  17. Estep MF, Hoering TC (1980) Biochemistry of the stable hydrogen isotopes. Geochim Cos-mochim Acta 44:1197–1206CrossRefGoogle Scholar
  18. Fehri A, Letolle R (1977) Transpiration and evaporation as the principal factors in oxygen isotope variations of organic matter in land plants. Physiol Vég 15:363–370Google Scholar
  19. Fehri A, Letolle R (1979) Relation entre le milieu climatique et les teneurs en oxygène 18 de la cellulose des plantes terrestres. Physiol. Vég 17:107—117Google Scholar
  20. Förstel H (1985) Die natürliche Fraktionierung der stabilen Sauerstoff-Isotope als Indikator für Reinheit und Herkunft von Wein. Naturwissenschaften 72:449–455CrossRefGoogle Scholar
  21. Förstel H (1986) Neue Möglichkeiten der Weinanalyse. Die natürliche Variation der stabilen Isotope 122:202–208Google Scholar
  22. Förstel H, Hützen H (1983) Oxygen isotope ratios in German groundwater. Nature 304:614–616CrossRefGoogle Scholar
  23. Förstel H, Hützen H (1984) Stabile Sauerstoff-Isotope als natürliche Markierung von Weinen. Weinwirtschaft-Technik 120:71–76Google Scholar
  24. Garson MJ, Staunton J (1979) Some new NMR methods for tracing the fate of hydrogen in biosynthesis. Chem Soc Rev 8:539–560CrossRefGoogle Scholar
  25. Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271:534–536CrossRefGoogle Scholar
  26. Gonfiantini R (1981) The S notation and the mass-spectrometric measurement techniques. In: Techn Rep Ser N° 210 Stable Isotope Hydrology Int Atomic Energy Agency Vienna, pp 35–84Google Scholar
  27. Grant DM, Curtis J, Croasmun WR, Dalling DK, Wehrli FW and Wehrli S (1982) NMR determination of site-specific deuterium isotope effects. J Am Chem Soc 104:4492- 4494Google Scholar
  28. Hagemann R, Nief G, Roth E (1970) Absolute isotopic scale for deuterium analysis of natural waters - absolute D/H ratio for SMOW. Tellus 22:712–715CrossRefGoogle Scholar
  29. Hutchinson CR (1982) The use of isotopic hydrogen and NMR spectroscopic techniques for the analysis of biosynthetic pathways. J Nat Prod 45:27–37CrossRefGoogle Scholar
  30. Krueger HW, Reesman RH (1982) Carbon isotope analyses in food technology. Mass Spectrom Rev 1:205–236CrossRefGoogle Scholar
  31. Lerman JC, Deleens E, Nato A, Moyse A (1974) Variation in the carbon isotope composition of a plant with crassulacean acid metabolism. Plant Physiol 53:581–584PubMedCrossRefGoogle Scholar
  32. Martin GG, Pelissolo FJC, Martin GJ (1986) Isolog: a diagnosis system for origin recognition of natural products through isotope analysis. Comput Enhanced Spectrosc 3:147–152Google Scholar
  33. Martin GJ, Martin ML (1981) Deuterium labelling at the natural abundance level as studied by high field quantitative 2H NMR. Tetrahedron Lett 22:3525–3528CrossRefGoogle Scholar
  34. Martin GJ, Martin ML (1983) Détermination par résonance magnétique nucléaire du deu- térium du fractionnement isotopique spécifique naturel. Application à la détection de la chaptalisation des vins. J Chim Phys 80:294–297Google Scholar
  35. Martin GJ, Martin ML, Mabon F (1982 a) A new method for the identification of the origin of natural products. Quantitative 2H NMR at the natural abundance level applied to the characterization of anetholes. J Am Chem Soc 104:2656–2659Google Scholar
  36. Martin GJ, Martin ML, Mabon F, Michon MJ (1982 b) Natural selective 2H labelling applied to the study of chemical mechanisms: labelling without enrichment. J Chem Soc Chem Commun 616–617Google Scholar
  37. Martin GJ, Martin ML, Mabon F, Michon MJ (1983 a) A new method for the identification of the origin of the ethanols in grain and fruit spirits: high field quantitative deuterium NMR at the natural abundance level. J Agric Food. Chem 31:311–315Google Scholar
  38. Martin GJ, Zhang BL, Martin ML, Dupuy P (1983 b) Application of quantitative deuterium NMR to the study of isotope fractionation in the conversion of saccharides to ethanols. Biophys Res Commun 111:890–896CrossRefGoogle Scholar
  39. Martin GJ, Sun XY, Guillou C, Martin ML (1985) NMR determination of absolute site-specific natural isotope ratios of hydrogen in organic molecules - analytical and mechanistic applications. Tetrahedron 41:3285—3296Google Scholar
  40. Martin GJ, Janvier P, Akoka S, Mabon F, Jurczak J (1986 a) A relation between the site-specific natural deuterium contents in α-pinemes and their optical activity. Tetrahedron Lett 27:2855–2858CrossRefGoogle Scholar
  41. Martin GJ, Guillou C, Naulet N, Brun S, Tep Y, Cabanis JC, Cabanis MT, Sudraud P (1986 b) Contrôle de l’origine et de l’enrichissement des vins par analyse isotopique spécifique - étude des différentes techniques d’enrichissement des vins. Sei Aliment 6:385–405Google Scholar
  42. Martin GJ, Zhang BL, Naulet N, Martin ML (1986 c) Deuterium transfer in the bioconversion of glucose to ethanol studied by specific isotope labelling at the natural abundance level. J Am Chem Soc 108:5116–5122CrossRefGoogle Scholar
  43. Martin ML, Delpuech JJ, Martin GJ (1980) Practical NMR spectroscopy. Heyden-Wiley, London, Ch 9Google Scholar
  44. Martin Ml, Zhang BL, Martin GJ (1983) Natural chirality of methylene sites applied to the recognition of origin and to the study of biochemical mechanisms. FEBS Lett 158:131–133CrossRefGoogle Scholar
  45. Monson KD, Hayes JM (1980) Biosynthetic control of the natural abundance of carbon-13 at specific positions within fatty acids in Escherichia coli. J Biol Chem 225:11435—11441Google Scholar
  46. Park R, Epstein S (1960) Carbon isotope fractionation during photosynthesis. Geochim Cosmochim Acta 21:110–126CrossRefGoogle Scholar
  47. Pascal RA, Baum MW, Wagner CK, Rodgers LR (1984) Measurement of deuterium kinetic isotope effects in organic reactions by natural abundance deuterium NMR spectroscopy. J Am Chem Soc 106:5377–5378CrossRefGoogle Scholar
  48. Rauschenbach P, Simon H, Stichler W, Moser H (1979) Vergleich der Deuterium und Kohlenstoff-13-Gehalte in Fermentations- und Syntheseethanol. Z Naturforsch 34 c: 1–4Google Scholar
  49. Schmidt HL, Förstel H, Heinzinger Eds (1982) Stable isotopes. Proceedings of the fourth International Conference. Elsevier AmsterdamGoogle Scholar
  50. Simon H, Medina R (1968) Messung der T-Fixierung in Äthanol nach Hefe-Gärung in H2O/HOT oder mit verschiedenen T-markierten Zuckern. Z Naturforsch 23b:326–329Google Scholar
  51. Simon H, Medina R, Müllhofer G (1968) Messung der T-Fixierung bei einigen Teilschritten der Glykolyse. Z Naturforsch 23 b:59–64Google Scholar
  52. Simpson TJ (1975) Carbon-13 nuclear magnetic resonance in biosynthetic studies. Chem Soc Rev 497–522Google Scholar
  53. Smith BN (1975) Carbon and hydrogen isotopes of sucrose from various sources. Natur-wissenschaften 62:390–391CrossRefGoogle Scholar
  54. Sternberg LR, Deniro MJ, Ajie H. (1984) Stable hydrogen isotope ratios of saponifiable lipids and cellulose nitrate from CAM, C3 and C4 plants. Phytochemistry 23:2475–2477CrossRefGoogle Scholar
  55. Sternberg LR, Deniro MJ, Ting IP (1984) Carbon, hydrogen and oxygen isotope ratios of cellulose from plants having intermediary photosynthetic modes. Plant Physiol 74:104—107PubMedGoogle Scholar
  56. Stothers JB (1974) 13C NMR-studies of reaction mechanisms and reactive intermediates. In: Levy GC (ed) Topics in carbon-13 NMR spectroscopy. Wiley-Interscience, New York 1:231–244Google Scholar
  57. Sudraud P, Koziet J (1978) Recherche de nouveaux critères analytique de caractérisation des vins. Ann Nutr Aliment 32:1063–1072PubMedGoogle Scholar
  58. Toulemonde B, Horman I, Egli H, Derbesy M (1983) Food related applications of high resolution NMR differentiation between natural and synthetic vanillin samples using 2H NMR. Helv Chim Acta 66:2342–2345CrossRefGoogle Scholar
  59. Wickman FE (1952) Variations in the relative abundance of the carbon isotopes in plants. Geochim Cosmochim Acta 2:243–254CrossRefGoogle Scholar
  60. Winkler FJ, Schmidt HL (1980) Einsatzmôglichkeiten der 13C-Isotopen-Massenspektro-metrie in der Lebensmitteluntersuchung. Z Lebensm Unters Forsch 171:85–94CrossRefGoogle Scholar
  61. Zhang BL, Wu WX, Gao ZH, Sun XY (1986) Acta chim Sin 44:437–41Google Scholar
  62. Ziegler H, Osmond CB, Stichler W, Trimborn P (1976) Hydrogen Isotope discrimination in higher plants: correlations with photosynthetic pathway and environment. Planta 128:85–92CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • G. J. Martin
  • M. L. Martin

There are no affiliations available

Personalised recommendations