Wine Analysis pp 339-358 | Cite as

Determination of Sulfur Dioxide in Grapes and Wines

  • C. S. Ough
Part of the Modern Methods of Plant Analysis book series (MOLMETHPLANT, volume 6)

Abstract

Very probably sulfur dioxide (SO2) is analyzed in wines more often than any other component. For the best product the careful and judicious use of SO2 is required. Most well-run wineries will check before and after the addition of SO2 to first determine if it should be added, then to be sure the correct amount has been added. The usefulness of SO2 in grape juice and wines has been reviewed many times. A few reviews are Kielhöfer 1963; Wucherpfennig 1975; Ough 1983; Schopfer and Aerny 1985. SO2 performs several functions in the preservation of a grape juice or wine. It inhibits the polyphenol oxidase enzymes of the grape (White and Ough 1973; Ribéreau-Gayon et al. 1976b; Traverso-Rueda and Singleton 1973), prevents oxidation of the wine by binding with aldehydes and ketones (Lafon-Lafourcade 1985), preventing Maillard-type reactions, and reacts with phenols to prevent their further oxidation such as wine pinking (Simpson et al. 1983). The addition of SO2 to a wine decreases the red color by adding to the 2- or 4-position on the anthocyanin.

Keywords

Sulfide Iodine Titration Cysteine Carbonyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerny J, Regamey R, Crettenand J (1984) Nouvelle enquête sur la teneur en anhydride sulfureux total des vins suisses. Rev Suisse Vitic Arboric Hortic 16:217–221Google Scholar
  2. Amati A, Guerzoni ME, Galassi S (1978) Richerche per limitare l’impiego della anidride solforosa in enologia. Vignevini 5(8):50–52Google Scholar
  3. Amerine MA, Ough CS (1980) Methods for analysis of musts and wines. Wiley, New York, p 341Google Scholar
  4. Amerine MA, Berg HW, Kunkee RE, Ough CS, Singleton VL, Webb AD (1980) Technology of winemaking. Avi Publishing, Westport Conn, p 794Google Scholar
  5. Anonymous (1978) Recueil des methodes internatinales d’analyse des vins. Office International de la Vigne et du vin, Paris, p 348Google Scholar
  6. Anonymous (1985) The reexamination of the GRAS status of sulfiting agents. Fed Am Soc Exp Biol (contract # FDA 223–83-2020) Dept. Health and Human Services. Wash DC, p 96Google Scholar
  7. Asvany A (1985) Les technologies de vinification permettant de diminuer les doses de SO2. Bull OIV 58:621–623Google Scholar
  8. Barnett D, Davis EG (1983) A GC method for the determination of sulfur dioxide in food headspaces. J Chromatogr Sci 21:205–208PubMedGoogle Scholar
  9. Beech FW, Thomas S (1985) Action antimicrobienne de l’anhydride sulfureux. Bull OIV 58:564–581Google Scholar
  10. Bertrand GL (1976) Free sulfur dioxide in red wine: a comparison of analytical methods in relation to the thermodynamic activity. Am J Enol Vitic 27:106–110Google Scholar
  11. Beutler HO (1984) A new enzymatic method for determination of sulfite in food. Food Chem 15:157–164Google Scholar
  12. Beutler HO, Schütte I (1983) Eine enzymatische Methode zur Bestimmung von Sulfit in Lebensmitteln. Dtsch Lebensm Rundsch 79:323–330Google Scholar
  13. Bidan P, Collon Y (1985) Metabolisime du soufre chez la levure. Bull OIV 58:544–563Google Scholar
  14. Binder A, Ebel S, Kaal M, Thron T (1975) Quantitative Bestimmung von SO2 in Wein durch direktpotentiometrische Messung. Dtsch Lebensm Rundsch 71:246–249Google Scholar
  15. Bioletti FT, Cruess WV (1912) Enological investigation. II. Sulfurous acid in wine-making. Univ Calif Agric Exp Sta Bull 230:25–27Google Scholar
  16. Brun S (1978) Étude collective sur l’analyse du vin. Résultats et interprétation. Ann Falsif Expert Chim 71:399–409Google Scholar
  17. Bruno P, Caselli M, Di Fano A, Traini A (1979) Fast and simple Polarographie method for determination of free and total sulphur dioxide in wines and other common beverages. Analyst 104:1083–1087PubMedGoogle Scholar
  18. Buechsenstein JW, Ough CS (1978) SO2 determination by aeration-oxidation: a comparison with Ripper. Am J Enol Vitic 29:161–164Google Scholar
  19. Burkhardt R, Lay A (1966) Bestimmung der Ascorbinsäure mit Glykolaldehyd in Most und Weißweinen neben schwefliger Säure. Mitt Klosterneuburg 16:457–462Google Scholar
  20. Burroughs LF (1975) Determining free sulfur dioxide in red wine. Am J Enol Vitic 26:25–29Google Scholar
  21. Burroughs LF, Sparks AH (1963) The determination of total SO2 content of ciders. Analyst 88:304–309Google Scholar
  22. Burroughs LF, Sparks AH (1964) The determination of free SO2 content of ciders. Analyst 89:55–60Google Scholar
  23. Burroughs LF, Sparks AH (1973a) Sulphite-binding power of wines and ciders. I. Equilibrium constants for the dissociation of carbonyl bisulphite compounds. J Sci Food Agric 24:187–198PubMedGoogle Scholar
  24. Burroughs LF, Sparks AH (1973 b) Sulphite-binding power of wines and ciders. III. Determination of carbonyl compounds in a wine and calculation of its sulphite-binding power. J Sci Food Agric 24:207–217PubMedGoogle Scholar
  25. Cianferoni R, Cianferoni L (1977) Trattamento d’urto con l’anidride solforosa ai fini di una migliore colorazione dei vini rossi. Vignevini 4(2):23–26Google Scholar
  26. Dalton-Bunnow MF (1985) Review of sulfite sensitivity. Am J Hosp Pharm 42:2220–2226PubMedGoogle Scholar
  27. Dasgupta PK, DeCesare K, Ullrey JC (1980) Determination of atmospheric sulfur dioxide with tetrachloromercurate (II) and the mechanism of the Schiff Reaction. Anal Chem 52:1912–1922Google Scholar
  28. Davis EG, Barnett D, Moy PM (1983) Determination of molecular and free sulphur dioxide in foods by headspace gas chromatography. J Food Technol 18:233–240Google Scholar
  29. Deibner L (1953) Sur les particularités du dosage iodometrique de petites quantités d’anhydride sulfureux libre et combiné a l’acetaldehyde en solution diluée et, en particulier dans les distillats des vins. Ann Technol Agric 2:207–242Google Scholar
  30. Deibner L (1959) L’anhydride sulfureux et l’ion sulfurique dans les vins et les jus de raisin. Rev Ferment Ind Aliment 14:179–186, 227–250Google Scholar
  31. Deibner L, Bénard P (1953) Recherches sur la separation qualitative à l’aide d’ion nouvel appareil distillatone de l’anhydride sulfureux contenu dans les liquides organiques, et sur les conditions de sa stabilité dons les distillats. Ind Agric Aliment 70:11–15Google Scholar
  32. Delfini C, Gaia P (1972) Indagine sulla produzione di anidride solforosa nel corso della fermentazione alcolica nei possiti Malvasia delle Lipari, Passito dé Caluso e Recioto della Valpolicella. Vini Ital 19:239–244Google Scholar
  33. Delfìni C, Gaia P, Bosia PD (1976) Formazione di anidride solforosa ed acido solfìdrico da parte dei lieviti nel corso della fermetazione alcolica. Vini Ital 18:251–264Google Scholar
  34. Delfìni C, Castino M, Ciolfì G (1980) L’aggiunta di tiamina ai mosti per ridurre i chetoacidi ed accrescere l’efficacia della SO2 nei vini. Riv Vitic Enol 33:572–589Google Scholar
  35. de Souza TLC (1984) Supelpak-S: The GC separating column for sulfur gases. J Chroma- togr Sci 22:470–472Google Scholar
  36. Dittrich HH, Staudenmayer T (1968) SO2-Bildung, Böckserbildung und Böckserbeseiti-gung. D Weinztg 104:707–709Google Scholar
  37. Dittrich HH, Staudenmayer T (1970) Über die Zusammenhänge zwischen Sulfit-Bildung und der Schwefelwasserstoff-Bildung bei S. cerevisiae. Zentralbl Bakteriol Parasitenk Infektionsk Hyg 2 Naturwiss Abt 124:113–118Google Scholar
  38. Dott W, Heinzel M, Trüper HG (1976) Sulfite formation by wine yeasts. I. Relationships between growth, fermentation and sulfite formation. Arch Microbiol 107:289–292Google Scholar
  39. Dott W, Heinzel M, Trüper HG (1977) Sulfite formation by wine yeasts. IV. Active uptake of sulfate by “low” and “high” sulfite producing yeasts. Arch Microbiol 112:283–285Google Scholar
  40. Du Plessis CS, Tromp A (1974) Automated determination of total sulphur dioxide in wine. Agrochemophysica 6:1–4Google Scholar
  41. Eschenbruch R (1972 a) Zur Substratabhängigkeit der H2S- und SO2-Bildung bei Saccha-romyces cerevisiae Stämmen. Wein-Wiss 27:40–44Google Scholar
  42. Eschenbruch R (1972 b) Der Einfluß von Methionin und Cystein auf die SO2-Bildung einiger Stämme von Saccharomyces cerevisiae bei der Vergärung von Traubenmost. Vitis 11:53–57Google Scholar
  43. Eschenbruch R (1972 c) Sulfate uptake and sulfite formation related to the methionine and/ or cysteine content of grape must during fermentation by strains of Saccharomyces cerevisiae. Vitis 11:222–227Google Scholar
  44. Eschenbruch R (1974) Sulfite and sulfite formation during wine making. A review. Am J Enol Vitic 25:157–161Google Scholar
  45. Eschenbruch R, Bonish P (1976) The influence of pH on sulfite formation by yeasts. Arch Microbiol 107:229–231Google Scholar
  46. Farris GA, Fatichenti F, Deiana P, Madau G, Cardu P, Serra M (1982) Selezione di stipiti di sacch cerevisiae bassé produttori di accettori di SO2 prove di fermentazione in can- tina. Riv Vitic Enol 35:376–384Google Scholar
  47. Farris GA, Fatichenti F, Deiana P, Madau G (1983) Functional selection of low sulfur dioxide-acceptor produces among 30 Saccharomyces cerevisiae strains. J Ferment Tech- nol 61:201–204Google Scholar
  48. Faulkner SV (1976) A new approach to sulphur dioxide analyses. Process Biochem May:47–52Google Scholar
  49. Feron VJ, Wensvoort P (1972) Gastric lesions in rats after the feeding of sulfite. Pathol Eur 7:103–111PubMedGoogle Scholar
  50. Feuillat M, Bureau G (1979) Mécanisme de formation des sulfites dans le môut de raisin. Application à la caractérisation des souches de levures productrices d’anhydride sulfureux. CR Séances Acad Agric Fr 65:1359–1364Google Scholar
  51. Fujita K, Ikuzawa M, Izumi T, Hamano T, Mitsuhashi Y, Matsuki Y, Adachi T, Nonogi H, Fuke T, Suzuki H, Toyoda M, Ito Y, Iwaida M (1979) Establishment of a modified Rankine method for the separate determination of free and combined sulphites in foods. III. Z Lebensm Unters Forsch 168:206–211Google Scholar
  52. Garcia ASC, San Romäo MV, Godenho MC (1985) O anidrido sulfuroso em mostos e vinhos. Estudo comparativo de métodos de anâlise. Cienc Tee Titivinic 4(1):5–19Google Scholar
  53. Gomes JVM, Babo MFDS (1985) Les technologies de vinification permettant de diminuer les doses de SO2. Bull OIV 58:624–636Google Scholar
  54. Grekas N, Calokerinos AC (1985) Continuous flow molecular emission cavity analysis of sulfite and sulfur dioxide. Analyst 110:335–339Google Scholar
  55. Hagen M (1977) Les erreurs de l’analyse ou les variations du SO2 libre en fonction de la temperature. Rev Fr Oenol (66):55–57Google Scholar
  56. Hamano T, Mitsuhashi Y, Matsuki Y, Ikuzawa M, Fujita K, Izumi T, Adachi T, Nonogi H, Fuke T, Suzuki H, Toyoda M, Ito Y, Iwaida M (1979) Application of gas chromatography for separate determination of free and combined sulfites in foods. I. Z Lebensm Unters Forsch 168:195–199Google Scholar
  57. Hartnell PC, Spedding DJ (1979) Uptake and metabolism of 35S-sulfate by wine yeast. Vitis 18:307–315Google Scholar
  58. Haubs H (1977) Auswirkungen der Herabsetzung des SO2-Gehaltes auf Lesetermin, Weinbereitung, Weintyp und Verkauf. Dtsch Weinbau 32:652–653Google Scholar
  59. Heinzel M, Dott W, Trüper HG (1976) Störungen im Schwefelstoffwechsel als Ursache der SO2-Bildung durch Weinhefen. Wein-Wiss 31:275–286Google Scholar
  60. Hernandez R (1985) Les technologies de vinification permettant de diminuer les doses de SO2. Bull OIV 58:617–620Google Scholar
  61. Hidalgo L (1978) La pourriture des raisins moyens de protection et influence sur les caractères des vins. Ann Technol Agric 27:127–136Google Scholar
  62. Hieki E, Kreisel A (1977) Automated analysis of beverages in particular wine. Part II. Automatable colorimetric determination of total sulfurous acid in grape must and wine, compared with the official method. Z Anal Chem 285:39–42Google Scholar
  63. Hofmann A (1977) Verminderung der SO2-Werte in der Kellereipraxis. Dtsch Weinbau 32:654–655Google Scholar
  64. Horowitz W (1980) Official methods of analysis of the association of official analytical chemists. Association of Official Analytical Chemists. Washington DC, p 1018Google Scholar
  65. Ingram M (1947) Investigation of errors arising in iodometric determination of free sulphurous acid by the acetone procedure. J Soc Chem Ind 66:105–115Google Scholar
  66. Jaulmes P (1970) État actuel des techniques pour le remplacement de l’anhydride sulfureux. Bull OIV 43:1320–1333Google Scholar
  67. Jennings N, Bunton NG, Crosby NT, Alliston TG (1978) A comparison of three methods of determination of sulfur dioxide in food and drink. J Assoc Public Anal 16:59–70Google Scholar
  68. Kalus WH (1978) Fehlerquellen bei der Schwefeldioxidbestimmung nach der Destillationsmethode von Reith-Willems. Fresenius’ Z Anal Chem 289:198–201Google Scholar
  69. Kampis A, Asvany A (1979) A polimer színanyagok és a szabad kénessav ása a vörös borok színére. Borgazdasag 27:152–155Google Scholar
  70. Kielhöfer E (1963) Etat et action de l’acide sulfureux dans les vins règles de son emploi. Ann Technol Agrie 12 (Suppl No 1):77–91Google Scholar
  71. Kielhöfer E, Aumann H (1957) Die Bestimmung der gesamten und freien schwefligen Säure im Wein, auch in Gegenwart von Ascorbinsäure. Mitt Klosterneuburg 7A:287–297Google Scholar
  72. King AD Jr, Ponting JD, Sanshuck DW, Jackson R, Mihara K (1981) Factors affecting death of yeast by sulfur dioxide. J Food Prot 44:92–97Google Scholar
  73. Lafon-Lafourcade S (1985) Role des microorganismes dans la formation de substances combinant le SO2. Bull OIV 58:590–604Google Scholar
  74. Lewis SF, Syty A (1983) Determination of sulfite in table wines by ultra violet absorption spectrophotometry in the gas phase. Atom Spectrosc 4:199–203Google Scholar
  75. Lissoni M (1981) La rapida determinazione dell’anidride solforosa (SO2) negli alimenti. Ind Aliment (Pinerolo) 20:284–285Google Scholar
  76. List D, Ruwish I, Longhans P (1986) Einsatzmöglichkeiten der Fließinjektionsanalyse in der Fruchtsaftanalytik. Flüss Obst 53(1):10–14Google Scholar
  77. Madison BL (1985) Colorimetrie method for the determination of sulfites using Ellman’s Reagent. Proceedings AOAC Task Force Meeting on Sulfite Residue Analysis Methods, Aug 15 (1985) Washington DCGoogle Scholar
  78. Margheri G, Versini G, Sartori G (1978) Ricerche inerenti alla elaborazione dei vini binachi di qualita con basso tenore di SO2. Vignevini 5(9):11–16Google Scholar
  79. Minárik E (1972) SO2-Bildung durch Sulfatreduktion bei verschiedenen Hefearten der Gattung Saccharomyces. Mitt Klosterneuburg 22:245–252Google Scholar
  80. Minàrk E, Navara A (1974) Effect of sulfate and sulfur amino acids levels on sulfite and sulfide formation by wine yeasts. Ann Microbiol Enzimol 24:21–36Google Scholar
  81. Mitsuhashi Y, Hamano T, Hasegawa A, Tanaka K, Matsuki Y, Udachi T, Obara K, Nonogi H, Fuke T, Sudo M, Ikuzawa M, Fujita K, Izumi T, Ogawa S, Toyoda M, Ito Y, Iwaida M (1979) Comparative determination of free and combined sulphites in foods by the modified Rankine method and flame photometric detection gas chromatography. V. Z Lebensm Unters Forsch 168:299–304Google Scholar
  82. Möller J, Winter B (1985) Application of flow injection techniques for the analysis of inorganic anions. Fresenius’ Z Anal Chem 320:451–456Google Scholar
  83. Monier-Williams GW (1927 a) The determination of sulphur dioxide in foods. Rep Pubi Health Med Subj No 43 Min Health, LondonGoogle Scholar
  84. Monier-Williams GW (1927 b) Determination of sulphur dioxide. Analyst 52:415–416Google Scholar
  85. Ogawa S, Suzuki H, Toyoda M, Ito Y, Iwaida M, Nonogi H, Fuke T, Obara K, Adachi T, Fujita K, Ikuzawa M, Izumi T, Hamano T, Mitsuhashi Y, Matsuki Y (1979) Colorimetrie microdetermination of sulfites in foods by use of the modified Rankine apparatus. IV. Z Lebensm Unters Forsch 168:293–298Google Scholar
  86. Ough CS (1983) Sulfur dioxide and sulfites. In: Branen AL, Davidson PM (eds) Antimicrobials in Foods. Marcel Dekker, New York, pp 177–203Google Scholar
  87. Ough CS (1985) Determination of sulfur dioxide in grapes and wines. J Assoc Off Anal Chem 69:5–7Google Scholar
  88. Paul F (1954) Zuverlässige Bestimmungs-Methoden für Aldehyd und schwefelige Säure in Wein und Fruchtsäften unter Verwendung des Apparates von Lieb und Zacherl. Mitt Rebe Wein Klosterneuburg 4A:225–234Google Scholar
  89. Paul F (1958) Die alkalimetrische Bestimmung der freien, gebundenen und gesamten schwefligen Säure mittels des Apparates von Lieb und Zacherl. Mitt Rebe Wein Klosterneuburg 8A:21–27Google Scholar
  90. Paul F (1975) Formas de combinación del SO2 durante la vinificación en blanco y en tinto. Sem Vitivinic 30(1.508–1.509):2845, 2847, 2849, 2851–2852Google Scholar
  91. Paul F (1976) Évolution de l’anhydride sulfureux au cours de la fermentation alcoolique et possibilitiés techniques de diminution du vin en SO2. Bull OIV 49:702–709Google Scholar
  92. Piracci A (1982) L’importanza dell’acetaldeide e degli acidi chetonici nel ridurre l’efficiacia della SO2 nei vini bianchi laziali. Vini Ital 24:98–104Google Scholar
  93. Pontallier P, Callede JP, Ribéreau-Gayon P (1982) Determination of free SO2 in red wines by automatic potentionmetric titration. Occurence of a specific behavior in new wines. Sei Aliment 2:329–339Google Scholar
  94. Poulard A, Brelet M (1978) Les levures formatrices d’anhydride sulfureux. Vignes Vines (275):9–14Google Scholar
  95. Rankine BC (1962) New method for determining sulphur dioxide in wine. Aust Wine Brew Spirit Rev 80(5): 14,16Google Scholar
  96. Rankine BC, Pocock KF (1969) Influence of yeast strain on binding of sulfur dioxide in wines and on its formation during fermentation. J Sei Food Agric 20:104–109Google Scholar
  97. Rehm H J, Wittmann H (1962) Beitrag zur Kenntnis der antimikrobiellen Wirkung der schwefligen Säure. I. Mitt. Übersicht über einflußnehmende Faktoren auf die antimi- krobielle Wirkung der schwefligen Säure. Z Lebensm Unters Forsch 118:413–429Google Scholar
  98. Reith JF, Willems JJL (1958) Über die Bestimmung der schwefligen Säure in Lebensmitteln. Z Lebensm Unters Forsch 108:270–280Google Scholar
  99. Ribéreau-Gayon J, Peynaud E, Sudraud P, Ribéreau-Gayon P (1976 a) Traité d’oenologie sciences et techniques du vin. Tome I. Analyse et Contrôle des vins. Dunod, Paris, p 671Google Scholar
  100. Ribéreau-Gayon J, Peynaud E, Ribéreau-Gayon P, Sudraud P (1976 b) Traité d’oenologie sciences et techniques du vin. Tome 3. Vinifications Transformations du Vin. Dunod, Paris, p 719Google Scholar
  101. Ripper M (1892) Schweflige Säure in Weinen und deren Bestimmung. J Prakt Chem 46:428–473Google Scholar
  102. Ruzicka J, Hansen EH (1981) Flow injection analysis. Chemical Analysis, vol 62, Wiley, New YorkGoogle Scholar
  103. Schneyder J, Vlcek G (1977) Maßanalytische Bestimmung der freien schwefligen Säure in Wein mit Jodsäure. Mitt Höheren Bundeslehr-Versuchsanst Wein-Obstbau (Klosterneuburg) 27:87–88Google Scholar
  104. Schopfer JF (1976) Évolution de l’anhydride sulfureux au cours de la fermentation alcoolique et possibilities technique de diminution du vin en SO2. Bull OIV 49:313–326Google Scholar
  105. Schopfer JF, Aerny J (1985) Le rôle de l’anhydride sulfureux en vinification. Bull OIV 58:515–542Google Scholar
  106. Schwedt G, Bäurle (1985) Methodenvergleiche (Photometrie, HPLC, Enzymatische Analyse) zur Bestimmung von Sulfit in Lebensmitteln. Fresenius’ Z Anal Chem 322:350–353Google Scholar
  107. Shinohara T, Watanabe M (1974) Experimental white wine making. Trials to reduce sulfur dioxide usage. J Soc Brew (Japan) 69:253–255Google Scholar
  108. Simpson RF, Bennett SB, Miller GC (1983) Oxidative pinking of white wines: a note on the influence of sulphur dioxide and ascorbic acid. Food Technol (Aust) 35:34–36Google Scholar
  109. Siska E (1977) Borâszati termékek kénessavtartalmânak meghatârozâsa. Borgazdasag 25:107–110Google Scholar
  110. Somers TC, Evans ME, Cellier KM (1983) Red wine quality and style: diversities of composition and adverse influences from free SO2. Vitis 22:348–356Google Scholar
  111. Spedding DJ, Stewart GM (1980) Use of sulphur dioxide gas sensing membrane probe in wines and juices at their natural pH. Analyst 105:1182–1187Google Scholar
  112. Sudraud P, Chauvet S (1985) Activité antilevure de l’anhydride sulfureux moléculaire. Connaiss Vigne Vin 19:31–40Google Scholar
  113. Sullivan DM, Smith RL (1985) Determination of sulfite in foods by ion chromatography. Food Technol (July) 45–48, 53Google Scholar
  114. Suzzi G, Romano P, Zambonelli C (1985) Saccharomyces strain selection in minimizing SO2 requirement during vinification. Am J Enol Vitic 36:199–202Google Scholar
  115. Tanner H (1963) Die Bestimmung der gesamten schwefligen Säure in Getränken, Konzentraten und in Essigen. Mitt Geb Lebensmittelunters Hyg 54:158–174PubMedGoogle Scholar
  116. Tanner H, Sandoz M (1972) Bestimmung der freien SO2 neben Askorbinsäure und anderen Reduktionen unter Zuhilfenahme von Glyoxal. Schweiz Z Obst Weinbau 108:331- 337Google Scholar
  117. Til HP, Feron VJ, de Groot AP (1972) The toxicity of sulfite. I. Long-term feeding and multigeneration studies in rats. Food Cosmet Toxicol 10:291–310PubMedGoogle Scholar
  118. Traverso-Rueda T, Singleton VL (1973) Catecholase activity in grape juice and its implications in winemaking. Am J Enol Vitic 24:103–109Google Scholar
  119. Ubighi M, Castino M, Di Stefano R, Opessio MS (1982) Prove sull’impiego dell’ H2S in fase prefermentativa in sostituzione della SO2. Riv Vitic Enol 35:485–510Google Scholar
  120. Usseglio-Tomasset L (1985) Les technologies de vinification permettant de diminuer les doses de SO2. Bull OIV 58:606–616Google Scholar
  121. Usseglio-Tomasset L, Ciolfi G, Pagliara A (1981) Estimating sulfur dioxide resistance of yeasts. I. The delaying action on fermentation start. Vini Ital 23:78, 80–90Google Scholar
  122. Usseglio-Tomasset L, Ciolfi G, di Stefano R (1982) The influence of the presence of antho-cyanins on the antiseptic activity of sulfur dioxide towards yeasts. Vini Ital 24:86–94Google Scholar
  123. Vahl JM, Converse JE (1980) Ripper procedure for determining sulfur dioxide in wines: Collaborative study. J Assoc Off Anal Chem 63:194–199PubMedGoogle Scholar
  124. Valachovic M (1985) O potrebe a moznostiach znizenia obsahu SO2 vo vine. Vinohrad 23:230–231Google Scholar
  125. Valouyko GG, Pavlenko NM, Ogorodnik ST (1985) Les technologies de vinification permettant de diminuer les doses de SO2. Bull OIV 58:637–644Google Scholar
  126. Villeton-Pachot JP, Persin M, Gal JY (1980) Titrage coulométrique du dioxyde de soufre dans les vins avec détection électrochemique du point equivalent. Analysis 8:422–427Google Scholar
  127. Wedzicha BL (1984) Chemistry of sulfur dioxide in foods. Elsevier Applied Science, London, p 381Google Scholar
  128. Wedzicha BL, Johnson MK (1979) A variation of the Monier-Williams distillation technique for the determination of sulphur dioxide in ginger ale. Analyst 104:694–696PubMedGoogle Scholar
  129. White BB, Ough CS (1973) Oxygen uptake studies on grape juice. Am J Enol Vitic 24:148–152Google Scholar
  130. Wilson B, Rankine BC (1977) A note on measurement of free sulfur dioxide in white wines by aspiration. Aust Wine Brew Spirits Rev 96(3): 14Google Scholar
  131. Wucherpfennig K (1975) Bedeutung der schwefligen Säure für die Traubensaftherstellung und ihre lebensmittelrechtlichen Aspekte. Flüss Obst 42:451–456, 461–464Google Scholar
  132. Wucherpfennig K, Schrobinger U, Keller U (1978) Versuche zur Einsparung von schwefliger Säure bei der Weinbereitung unter spezieller Berücksichtigung der Mostpasteuri- sation. Schweiz Z Obst Weinbau 114:24–33Google Scholar
  133. Würdig G (1976) Évolution de l’anhydride sulfureux au cours de la fermentation alcoolique et possibilités techniques de diminution du vin en SO2. Bull OIV 49:405–415Google Scholar
  134. Würdig G (1985) Levures produisant du SO2. Bull OIV 58:582–589Google Scholar
  135. Würdig G, Schlotter HA (1967) SO2-Bildung in gärenden Traubenmosten. Z Lebensm Unters Forsch 134:7–13Google Scholar
  136. Zonneveld H, Meyer A (1959) Bestimmung der schwefligen Säure in Lebensmitteln, insbesondere in Trockengemüse. Z Lebensm Unters Forsch 109:198–205Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • C. S. Ough

There are no affiliations available

Personalised recommendations