Random Loading by Large Displacement Chaotic Motions

  • W. Schiehlen
  • D. Bestle
Conference paper
Part of the IUTAM Symposium book series (IUTAM)


In an engineering approach, the chaotic motions and the corresponding loads should be considered as a deterministic system as well as a stochastic process. The criterium proposed to distinguish between these two contrary models uses the return period of two crossings of a sufficiently large admissible stress. Numerical results are presented for the double pendulum, a system of two degrees of freedom only.


Return Period Reaction Force Failure Probability Multibody System Chaotic Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bianchi, G. and Schiehlen, W. (eds.): Dynamics of Multibody Systems. Berlin/…: Springer-Verlag 1986.MATHGoogle Scholar
  2. 2.
    Guckenheimer, J. and Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York/…: Springer-Verlag 1986.Google Scholar
  3. 3.
    Kreuzer, E.: Numerische Untersuchung nichtlinearer dynamischer Systeme. Berlin/…: Springer-Verlag 1987.MATHGoogle Scholar
  4. 4.
    Bestie, D.: Beurteilungskriterien für chaotische Bewegungen nichtlinearer Schwingungssysteme. Ph.D. thesis, University of Stuttgart, to appear.Google Scholar
  5. 5.
    Schuëller, G.: Einführung in die Sicherheit und Zuverlässigkeit von Tragwerken. Berlin/München: Wilhelm Ernst & Sohn 1981.Google Scholar
  6. 6.
    Schiehlen, W.: Technische Dynamik. Stuttgart: B.G. Teubner 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • W. Schiehlen
    • 1
  • D. Bestle
    • 1
  1. 1.Institute B of MechanicsUniversity of StuttgartStuttgart 80Germany

Personalised recommendations