Nonlinear Ship Waves at Low Froude Number

  • A. J. Hermans
  • F. J. Brandsma
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Abstract

It is well-known in slow ship theory that the usual linearized free surface condition cannot be applied when obstacles are considered of which the beam to length ratio is not sufficiently small. Several authors (Baba, Eggers, Hermans, Maruo and Ogilvie) have studied the effect of nonlinear terms in the free surface condition. In principle the local velocity determines a local Green’s function for the calculation of the wave pattern. A different approach is the application of the ray method (Keller).

Keywords

Hull sinO Tane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baba, E. (1976). Wave resistance of ships in low speed, Mitsubishi Technical Bulletin 109.Google Scholar
  2. 2.
    Baba, E. (1978). Numerical evaluation of a wave resistance theory for slow ships, Mitsubishi Technical Report 125.Google Scholar
  3. 3.
    Bleistein, N., Handelsman, R.A. (1975). Asymptotic expansions of integrals, Holt, Rinehart & Winston, New York.Google Scholar
  4. 4.
    Brandsma, F.J., Hermans, A.J. (1985). A quasi linear free surface condition in slow ship theory, Shiffslechnik 32, Heft 2, pp. 25–41.Google Scholar
  5. 5.
    Brandsma, F.J. (1987). Low Froude number expansions for the wave pattern and the wave resistance of general ship forms, Ph.D. Thesis, TU Delft.Google Scholar
  6. 6.
    Brard, R. (1972). The representation of a given ship form by singularity distributions when the boundary condition on the free surface is linearized, J. of Ship Res. 16, pp. 72–91.Google Scholar
  7. 7.
    Dagan, G. (1975). Waves and wave resistance of thin bodies moving at low speed: the nonlinear free-surface effects, J. of Fluid Mech. 69, pp. 405–416.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Eggers, K. (1980). Contributions to the wave resistance workshops in Washington (1979) and IZU (1980), Inst. für Schiffbau der Univ. Hamburg, Bericht nr. 396.Google Scholar
  9. 9.
    Eggers, K. (1981). Non-Kelvin dispersive waves around non-slender ships, Shiffslechnik, Band 8, pp. 223–251.Google Scholar
  10. 10.
    Erdelyi, A. (1956). Asymptotic expansions, Dover Publ. Inc., New York.MATHGoogle Scholar
  11. 11.
    Hermans, A.J. (1974). A matching principle in non-linear ship wave theory at low Froude numbers, Delft Progress Rep. 1.Google Scholar
  12. 12.
    Hermans, A.J. (1980). The wave pattern of a ship sailing at low speed, Appl. Math. Inst. Univ. of Delaware, Techn. Rep. 84A.Google Scholar
  13. 13.
    Kayo, Y., Takekuma, K., Eggers, K., Sharma, S.D. (1982). Observation of free surface shear flow and its relation to bow wave-breaking of full forms, Inst. für Schiffbau der Univ. Hamburg.Google Scholar
  14. 14.
    Keller, J.B. (1979). The ray theory of ship waves and the class of streamlined ships, J. of Fluid Mech. 91, pp. 465–488.MATHCrossRefGoogle Scholar
  15. 15.
    Keller, J.B., Ahluwalia, D.S. (1976). Wave resistance and wave patterns of thin ships, J. of Ship Res. 20, No. I, pp. 1–6.Google Scholar
  16. 16.
    Kochin, N.E., Kibel, I.A., Roze, N.V. (1964). Theoretical hydromechanics, Interscience Publ., New York.MATHGoogle Scholar
  17. 17.
    Korving, C., Hermans, A.J., The wave resistance for flow problems with a free surface, Second Int. Conf. on Num. Ship Hydr., Univ. of California.Google Scholar
  18. 18.
    Lewis, R.M., Keller, J.B. (1964). Asymptotic methods for partial differential equations, N.Y.U. Courant Inst., Res. Report EM-194.Google Scholar
  19. 19.
    Maruo, H. (1979). On the free surface flow around a two-dimensional body fixed in a uniform stream, Proc. of the 29th Japan National Congress for Appl. Math.Google Scholar
  20. 20.
    Maruo, H. (1980). On the free surface flow around full hull forms at low Froude numbers, Bull. of the Fac. of Engineering, 29, Yokohama Nat. Univ.Google Scholar
  21. 21.
    Michell, J.H. (1898). The wave resistance of a ship, Phil. Mag. 45, pp. 106–123.Google Scholar
  22. 22.
    O’Malley, R.E. (1970). On non-linear singular perturbation problems with interior non-uniformities, J. Mal. Mech. 19, pp. 1103–1112.MathSciNetMATHGoogle Scholar
  23. 23.
    Ogilvie, T.F. (1968). Wave resistance: the low speed limit, Rep. 002, Dept. of Nay. Arch. and Mar. Engin., Univ. of Michigan.Google Scholar
  24. 24.
    Ogilvie, T.F. (1976). On non-linear wave resistance theory, Int. Seminar on Wave Resist., Tokyo.Google Scholar
  25. 25.
    Salvesen, N. (1969). On higher order wave theory for submerged two-dimensional bodies, J. of Fluid Mech. 38, pp. 415–432.MATHCrossRefGoogle Scholar
  26. 26.
    Salvesen, N., Von Kerczek, G. (1976). Comparison of numerical and perturbation solutions of two-dimensional non-linear water-wave problems, J. of Ship Res. 20, No. 3, pp. 160–170.Google Scholar
  27. 27.
    Stoker, J.J. (1957). Water waves, Interscience Publ., New York.MATHGoogle Scholar
  28. 28.
    Tuck, E.O. (1965). The effect of non-linearity at the free surface on flow past a submerged cylinder, J. of Fluid Mech. 22, pp. 401–414.MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Van Dyke, M. (1964). Perturbation methods in fluid mechanics, Academic Press, New York.MATHGoogle Scholar
  30. 30.
    Wehausen, J.V. (1973). The wave resistance of ships, Adv. in Appl. Mech. 13, pp. 93–245.Google Scholar
  31. 31.
    Wehausen, J.V., Laitone, E. (1960). Surface waves, Encyclopedia of Physics 9, pp. 446–778, Springer Verlag, Berlin.Google Scholar
  32. 32.
    Yim, B. (1981). A ray theory for non-linear ship waves and wave resistance, Third Int. Conf. on Num. Ship Hydr., Paris.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • A. J. Hermans
    • 1
  • F. J. Brandsma
    • 1
  1. 1.Department of MathematicsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations