Recent Developments in the Modelling of Unsteady and Breaking Water Waves

  • D. H. Peregrine
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


Steep unsteady water waves were first successfully modelled by Longuet-Higgins and Cokelet (1976). A boundary integral method for solving Laplace’s equation for irrotational flow was used together with time marching of the position and velocity potential of surface particles using the free surface boundary conditions. Most subsequent work uses boundary integral formulations. Marker and cell (MAC) methods have also been used to a lesser extent; however they do not appear to be as successful in describing wave overturning and are not described here.


Solitary Wave Standing Wave Breaking Wave Hydraulic Jump Boundary Integral Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, G.R., Meiron, D.I. and Orzag, S.A.: Generalised vortex methods for free-surface flow problems. J. Fluid Mech. 123 (1982) 477–501.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Basco, D.R.: A qualitative description of wave breaking. J. Waterway, Port, Coastal & Ocean Engng., Proc. A.S.C.E. 111 (1985) 171–188.CrossRefGoogle Scholar
  3. 3.
    Dold, J.W. and Peregrine, D.H.: An efficient boundary-integral method for steep unsteady water waves. Numerical methods for fluid dynamics II, eds: K.W. Morton and M.J. Baines, Clarendon Press, Oxford (1986a) 671–679.Google Scholar
  4. 4.
    Dold, J.W. and Peregrine, D.H.: Water wave modulation, Proc. 20th Internat. Conf. Coastal Engng., Taipei, A.S.C.E. (1986b).Google Scholar
  5. 5.
    Dommermuth, D.G., Yue, D.K.P., Rapp, R.J., Chan, F.S. and Melville, W.K.: Deep-water breaking waves: a comparison between potential theory and experiments. Submitted for publication (1987).Google Scholar
  6. 6.
    Duncan, J.H.: An experimental investigation of breaking waves produced by a towed hydrofoil. Proc. Roy. Soc. Lond. A 377 (1981) 331–348.CrossRefGoogle Scholar
  7. 7.
    Duncan, J.H.: The breaking and non-breaking wave resistance of a two-dimensional hydrofoil. J. Fluid Mech. 126 (1983) 507–520.CrossRefGoogle Scholar
  8. 8.
    Evans, D.V. and Newman, J.N.: Report on First International Workshop on Water Waves and Floating Bodies. J. Fluid Mech. 174 (1987) 521–528.CrossRefGoogle Scholar
  9. 9.
    Evans, D.V. (ed.): Proceedings of Second International Workshop on Water Waves and Floating Bodies, Bristol University, School of Mathematics (1987).Google Scholar
  10. 10.
    Greenhow, M.: Free-surface flows related to breaking waves. J. Fluid Mech. 134 (1983) 259–275.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Greenhow, M.: Water entry and exit of a horizontal cylinder, in Evans (1987).Google Scholar
  12. 12.
    Greenhow, M., Vinje, T., Brevik, P. and Taylor, J.: A theoretical and experimental study of the capsize of Salter’s duck in extreme waves. J. Fluid Mech. 118 (1982) 221–239.CrossRefGoogle Scholar
  13. 13.
    Hansen, E.B.: Stokes flow down a wall into an infinite pool. J. Fluid Mech. 178 (1987) 243–256.MATHCrossRefGoogle Scholar
  14. 14.
    Lin, W.-M., Newman, J.N. and Yue, D.K.: Non-linear forced motions of floating bodies. 15th Symp. Naval Hydrodynamics, Hamburg (1984).Google Scholar
  15. 15.
    Longuet-Higgins, M.S.: A class of exact, time-dependent, free-surface flows. J. Fluid Mech. 55 (1972) 529–543.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Longuet-Higgins, M.S.: On the form of the highest progressive and standing waves in deep water. Proc. Roy. Soc. Lond. A, 331 (1973) 445–456.MATHCrossRefGoogle Scholar
  17. 17.
    Longuet-Higgins, M.S.: On the forming of sharp corners at a free surface. Proc. Roy. Soc. London. A, 371 (1980) 453–478.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Longuet-Higgins, M.S.: Bubbles, breaking waves and hyperbolic jets at a free surface. J. Fluid Mech. 127 (1983) 103–121.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Longuet-Higgins, M.S. and Cokelet, E.D.: The deformation of steep surface waves on water. I. A numerical method of computation. Proc. Roy. Soc. Lond. A, 350 (1976) 1–26.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Longuet-Higgins, M.S. and Cokelet, E.D.: The deformation of steep surface waves on water. II. Growth of normal-mode instabilities. Proc. Roy. Soc. Lond. A, 364 (1978) 1–28.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    McIver, P. and Peregrine, D.H.: Comparison of numerical and analytical results for waves that are starting to break. Int. Sympos. on Hydrodynamics in Ocean Engng., Trondheim, Norway (1981) 203–215.Google Scholar
  22. 22.
    Madsen, P.A. and Svendsen, I.A.: Turbulent bores and hydraulic jumps. J. Fluid Mech. 129 (1982) 1–25.CrossRefGoogle Scholar
  23. 23.
    New, A.L.: A class of elliptical free-surface flows. J. fluid Mech. 130 (1983) 219–239.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    New, A.L., McIver, P. and Peregrine, D.H.: Computations of breaking waves. J. Fluid Mech. 150 (1985) 233–251.MATHCrossRefGoogle Scholar
  25. 25.
    Peregrine, D.H.: Breaking waves on beaches. Ann. Rev. Fluid Mech. 15 (1983) 149–178.CrossRefGoogle Scholar
  26. 26.
    Peregrine, D.H. and Svendsen, I.A.: Spilling breakers, bores and hydraulic jumps. Proc. 16th Coastal Engng. Conf. A.S.C.E., Hamburg 1 (1978) 540–550.Google Scholar
  27. 27.
    Peregrine, D.H., Cokelet, E.D. and McIver, P.: The fluid mechanics of waves approaching breaking. Proc. 17th Conf. Coastal Engng., A.S.C.E. 1 (1980) 512–528.Google Scholar
  28. 28.
    Pugh, D.: The computation of velocity field beneath steep unsteady water-waves. M.Sc. dissertation, Bristol University (1985).Google Scholar
  29. 29.
    Saffman, P.G. and Yuen, H.C.: A note on numerical computations of large amplitude standing waves. J. Fluid Mech. 95 (1979) 705–715.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Srokosz, M.A.: Breaking effects in standing and reflected waves in “Hydrodynamics in ocean engineering”, Sympos. Trondheim, Norwegian Inst. Tech. (1981) 183–202.Google Scholar
  31. 31.
    Svendsen, I.A. and Madsen, P.A.: A turbulent bore on a beach. J. Fluid Mech. 148 (1984) 73–96.MATHCrossRefGoogle Scholar
  32. 32.
    Tanaka, M., Dold, J.W., Lewy, M. and Peregrine, D.H.: Instability and breaking of a solitary wave. J. Fluid Mech. To appear.Google Scholar
  33. 33.
    Tulin, M.P. and Cointe, R.: A theory of spilling breakers. 16th Sympos. Naval Hydrodynamics, Berkeley, National Acad. Press, Washington, D.C. (1986).Google Scholar
  34. 34.
    Vinje, T. and Brevik, P.: Numerical simulation of breaking waves. Adv. Water Resources 4 (1981) 77–82.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • D. H. Peregrine
    • 1
  1. 1.School of MathematicsUniversity of BristolBristolUK

Personalised recommendations