Image Structure

  • Jan J. Koenderink
Conference paper
Part of the NATO ASI Series book series (volume 39)

Abstract

This paper presents a theoretical introduction into image structure. The topological structure of scalar and vector images is described. Scale-space is treated in some depth, including the problem of sampling and that of canonical projection. Objects are defined by way of a theory of (physical) measurements. Their properties (shape of the boundary, skeleton, natural subparts) are defined and their topological changes over varying ranges of resolution explored. A short section on the theory of local and global operators in scale-space is provided.

Keywords

Biomass Entropy Manifold Convolution Sine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruce, J.W. and Giblin, P.J. (1984). Curves and singularities,Cambridge.Google Scholar
  2. Doorn, A.J. van, Grind, W.A.van de, and Koenderink, J.J. (eds.)(1984). Limits in Perception,V.N.U. Science Press, Utrecht.Google Scholar
  3. Eells, J. (1967). Singularities of smooth maps, Gordon and Breach, New York.MATHGoogle Scholar
  4. Golubitski, M. and Guillemin, V. (1973). Stable mappings and their singularities, Springer, New York.Google Scholar
  5. Guillemin, V. and Pollack, A. (1974). Differential topology, Prentice-Hall, Englewood Cliffs.MATHGoogle Scholar
  6. Hoffman, D. and Richards, W. (1982). Representing smooth plane curves for visual recognition: implications for figure-ground reversal, Proc. Am. Ass. Art. Intell., pp. 5–8.Google Scholar
  7. Koenderink, J.J. and Doorn, A.J. van (1978). Visual detection of spatial contrast; influence of location in the visual field, target extent and illuminance level, BioZ. Cybern. 30, pp. 157–167.CrossRefGoogle Scholar
  8. Koenderink, J.J. and Doorn, A.J. van (1979). The structure of two-dimensional scalar fields with applications to vision, BioZ. Cybern. 33, pp. 151–158.CrossRefMATHGoogle Scholar
  9. Koenderink, J.J. and Doorn, A.J. van (1981). A description of the structure of visual images in terms of an ordered hierarchy of light and dark blobs. In: Second International Visual Psychophysics and Medical Imaging Conf., IEEE Cat. No. 81 CH 1676–6.Google Scholar
  10. Koenderink, J.J. (1984). Simultaneous order in nervous nets from a functional standpoint, Biol. Cybern. 50, pp. 35–41.CrossRefMATHMathSciNetGoogle Scholar
  11. Koenderink, J.J. (1984). Geometrical structures determined by the functional order in nervous nets, Biol. Cybern. 50, pp. 43–50.CrossRefMATHMathSciNetGoogle Scholar
  12. Koenderink, J.J. (1984). The structure of images, Biol. Cybern. 50, pp. 363–370.CrossRefMATHMathSciNetGoogle Scholar
  13. Koenderink, J.J. and Doorn, A.J. van (1986). Dynamic shape, Biol. Cybern. 53, pp. 383–396.CrossRefMATHGoogle Scholar
  14. Mason, B.J. (1962). Rain and rainmaking,Cambridge U.P.Google Scholar
  15. Maxwell, J.C. (1980). The scientific papers of James Clerk Maxwell. Vol. II: On Hills and Dales, W.D. Niven (ed. ), Cambridge U.P.Google Scholar
  16. Metzger, W. von (1975). Gesetze des Sehens, Waldemar Kramer, Frankfurt a/M.Google Scholar
  17. Milnor, J. (1963). Morse theory,Princeton U.P.Google Scholar
  18. Nye, J.F. and Thorndike, A.S. (1980). Events in evolving three-dimensional vector fields, J. Phys. A: Math. Gen. 13, pp. 1–14.CrossRefMATHMathSciNetGoogle Scholar
  19. Poston, T. and Stewart, I. (1978). Catastrophe theory and its applications, Pitman, London.MATHGoogle Scholar
  20. Rosenfeld, A. (ed.)(1984). Multiresolution image processing and analysis,Springer Berlin.Google Scholar
  21. Thom, R. (1972). Stabilité structurelle et morphogenèse, Benjamin, Reading.Google Scholar
  22. Thorndike, A.S., Cooley, C.R. and Nye, J.F. (1978). The structure and evolution of flow fields and other vector fields, J. Phys. A: Math. Gen. 11, pp. 1455–1490.CrossRefMathSciNetGoogle Scholar
  23. Whitney, H. (1955). On singularities of mappings of Euclidean spaces I. Mappings of the plane into the plane, Ann. Math. 62, pp. 374–410.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Jan J. Koenderink
    • 1
  1. 1.Utrecht UniversityThe Netherlands

Personalised recommendations