Initial Performance of Block-Iterative Reconstruction Algorithms

  • Gabor T. Herman
  • Haim Levkowitz
Part of the NATO ASI Series book series (volume 39)


Commonly used iterative techniques for image reconstruction from projections include ART (Algebraic Reconstruction Technique) and SIRT (Simultaneous Iterative Reconstruction Technique). It has been shown that these are the two extremes of a general family of block-iterative image reconstruction techniques. Here we show that the initial performance of these commonly used extremes can be bested by other members of the family.


Block Size Relaxation Parameter Initial Performance Iterative Step Algebraic Reconstruction Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ben-Israel, A. and Greville, T.N.E. (1974). Generalized. Inverses: Theory and Applications, John Wiley and Sons, New York.MATHGoogle Scholar
  2. Censor, Y. (1983). Finite series expansion reconstruction methods, Proc. IEEE 71, pp. 409–419.CrossRefGoogle Scholar
  3. Cimmino, G. (1938). Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, La Ricerca Scientificia (Roma) XVI, Ser. II, Anno IX 1, pp. 326–333.Google Scholar
  4. Eggermont, P.P.B., Herman, G.T., and Lent, A. (1981). Iterative algorithms for large partitioned linear systems with applications to image reconstruction, Lin. Alg. Appl. 40, pp. 37–67.CrossRefMATHMathSciNetGoogle Scholar
  5. Gilbert, P.F.C. (1972). Iterative methods for three-dimensional reconstruction of an object from projections, J. Theor. Biol. 36, pp. 105–117.CrossRefGoogle Scholar
  6. Gordon, R., Bender, R., and Herman, G.T. (1970). Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography, J. Theor. Biol. 29, pp. 471–482.CrossRefGoogle Scholar
  7. Herman, G.T. (1980). Image Reconstruction from Projections: The Funda- mentals of Computerized Tomography, Academic Press, New York.Google Scholar
  8. Herman, G.T., Robb, R.A., Gray, J.E., Lewitt, R.M., Reynolds, R.A., Smith, B., Tuy, H., Hanson, D.P., and Kratz, C.M. (1982). Reconstruction algorithms for dose reduction in x-ray computed tomography, Proc. MEDCOMP ‘82, Philadelphia, pp. 448–455.Google Scholar
  9. Herman, G.T., Levkowitz, H., Tuy, H.K., and McCormick, S. (1984). Multilevel image reconstruction. In: Multiresolution Image Processing and Analysis, A. Rosenfeld (ed.), Springer-Verlag, Berlin, pp. 121–13.Google Scholar
  10. Kaczmarz, S. (1937). Angenäherte Auflösung von Systemen linearer Gleichungen. Bull. Acad. Polon. Sci. Lett. A, pp. 355–357.Google Scholar
  11. Lewitt, R.M. (1982). Mini-SNARK: Version 2, Technical Report MIPG68, Medical Image Processing Group, Department of Radiology, University of Pennsylvania.Google Scholar
  12. Lewitt, R.M. (1983). Reconstruction algorithms: transform methods, Proc. IEEE 71, pp. 390–408.CrossRefGoogle Scholar
  13. Oppenheim, B.E. (1977). Reconstruction tomography from incomplete projections, In: Reconstruction Tomography in Diagnostic Radiology and Nuclear Medicine, M.M. Ter-Porgossian et al. (eds.), University Park Press, Baltimore, pp. 155–183.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Gabor T. Herman
    • 1
  • Haim Levkowitz
    • 1
  1. 1.University of PennsylvaniaUSA

Personalised recommendations