Advertisement

Thermodynamical Constitutive Laws - Outlines -

  • W. Muschik

Summary

Material theories can be divided into two classes, the probabilistic and the deterministic or phenomenological theories. The probabilistic theories can be decomposed into stochastic, statistical and transporttheoretical branches which are shortly discussed. The phenomenological theories can be divided into two categories, those of discrete systems and those using continuum theoretical concepts which are discussed in more detail.

Keywords

State Space Constitutive Equation Heat Flux Density Discrete System Constitutive Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muschik, W.: Formulations of the Second Law, Symposium “Statistical Thermodynamics and Semiconductors” Gregynog, Sept. 14-17, 1987, J. Phys. Chem. Solids, to be published.Google Scholar
  2. 2.
    Axelrad, D.R.: Foundations of the Probabilistic Mechanics of Discrete Media. Oxford: Pergamon Press 1984.MATHGoogle Scholar
  3. 3.
    Fick, E.; Sauermann, G.: Quantenstatistik Dynamischer Systeme, Bd. I. Thun: Harri Deutsch 1983.Google Scholar
  4. 4.
    Cercignani, C.: Theory and Application of the Boltzmann Equation. New York: Elsevier 1975MATHGoogle Scholar
  5. 5.
    Axelrad, D.R.: Micromechanics of Solids. Amsterdam: Elsevier 1978.Google Scholar
  6. 6.
    See [2] sec. 3.7 and hints therein.Google Scholar
  7. 7.
    Fick, E.; Schwegler, H.: Z. Physik 200 (1967) 165.MATHADSCrossRefGoogle Scholar
  8. 8.
    Jaynes, E.T.: Phys. Rev. 106 (1957) 620, 108 (1957) 171.ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Robertson, B.: Phys. Rev. 144 (1966) 151.ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Muschik, W.; Fang, J.: Statistical Foundation of Nonequili-brium Contact Quantities Bridging Phenomenological and Statistical Nonequilibrium Thermodynamics, to be published.Google Scholar
  11. 11.
    Kubo, R.; Toda, M.; Hashitsume, N.: Statistical Physics II. Berlin: Springer 1978, Chap. 4.Google Scholar
  12. 12.
    Grabert, H.: Projection Operator Techniques in Nonequilibrium Statistical Mechanics, Springer Tracts in Modern Physics 95. Berlin: Springer 1982Google Scholar
  13. 13.
    Risken, H.: The Fokker-Planck Equation. Berlin: Springer 1984MATHGoogle Scholar
  14. 14.
    Ferziger, J.H.; Kaper, H.G.: Mathematical Theory of Transport Processes in Gases. Amsterdam: North-Holland 1972Google Scholar
  15. 15.
    Schottky, W.: Thermodynamik, l.Teil §1. Berlin: Springer 1929.Google Scholar
  16. 16.
    Meixner, J.: Rheol. Acta 7 (1968) 8.CrossRefGoogle Scholar
  17. 17.
    Truesdell, C.; Toupin, R.: The Classical Field Theories; in Handbook of Physics, Vol. III/l. Berlin: Springer 1960, Sect. G.Google Scholar
  18. 18.
    Truesdell, C.; Noll, W.: The Non-linear Field Theories of Mechanics; in Handbook of Physics, Vol. III/3. Berlin: Springer 1965Google Scholar
  19. 19.
    Muschik, W.; Brunk, G.: ZAMM 57 (1977) T108.MathSciNetGoogle Scholar
  20. 20.
    Muschik, W.: ZAMM 62 (1982) T143.MathSciNetGoogle Scholar
  21. 21.
    Leigh, D.C.: Nonlinear Continuum Mechanics. New York: McGraw-Hill 1968, Lect. 9Google Scholar
  22. 22.
    see [18], sec. 29Google Scholar
  23. 23.
    see [18], sec. 31Google Scholar
  24. 24.
    Müller, I.: Thermodynamics, Chap.4. Boston: Pitman 1985.MATHGoogle Scholar
  25. 25.
    Kestin, J.: A Course in Thermodynamics, Vol.I, Chap.3. New York: McGraw Hill 1979.Google Scholar
  26. 26.
    Muschik, W.: ZAMM 61 (1981) T213Google Scholar
  27. 27.
    Muschik, W.: J. Appl. Sci. 4 (1986) 189Google Scholar
  28. 28.
    Haase, R.: Thermodynamik der irreversiblen Prozesse. Darmstadt: Steinkopf 1963, § 1.24, § 4.12.Google Scholar
  29. 29.
    Swenson, R.J.: J. Non-Equilib. Thermodyn. 3 (1978) 39ADSCrossRefGoogle Scholar
  30. 30.
    Muschik, W.: J. Non-Equilib. Thermodyn. 2 (1977) 109ADSCrossRefGoogle Scholar
  31. 31.
    Muschik, W.; Trostel, R.: ZAMM 63 (1983) T190Google Scholar
  32. 32.
    Truesdell, C.: Rational Thermodynamics. New York: McGraw-Hill, Lect. 7.Google Scholar
  33. 33.
    Hutter, K.: Acta Mechanica 27 (1977) 1ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    see [32], Lect.5 and Lect.6.Google Scholar
  35. 35.
    see [18], Sect.79Google Scholar
  36. 36.
    Noll, W.: Arch. Rat. Mech. Anal. 48 (1972) 1MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Coleman, B.D.; Owen, D.R.: Arch. Rat. Mech. Anal. 54 (1974) 1MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Müller, I.: Thermodynamik. Düsseldorf: Bertelsmann 1973, Kap. III.5MATHGoogle Scholar
  39. 39.
    Liu, I.S.; Müller, I.: Arch. Rat. Mech. Anal. 83 (1983) 285MATHCrossRefGoogle Scholar
  40. 40.
    Green, A.E.; Naghdi, P.M.: Arch. Rat. Mech. Anal. 48 (1972) 352MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Eringen, A.C.: Crystal Lattice Defects 7 (1977) 109Google Scholar
  42. 42.
    Muschik, W.: in Lecture Notes in Physics 199. Berlin: Springer 1984, p. 387Google Scholar
  43. 43.
    Coleman, B.D.; Noll, W.: Arch. Rat. Mech. Anal. 13 (1963) 167MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Coleman, B.D.: Arch. Rat. Mech. Anal. 17 (1964) 1Google Scholar
  45. 45.
    see [38j, Kap. IV, 2.aGoogle Scholar
  46. 46.
    Liu, I.S.: Arch. Rat. Mech. Anal. 46 (1972) 131MATHGoogle Scholar
  47. 47.
    Muschik, W.: in Chien Wei-zang (ed): Proc. Intern. Conf. Nonlinear Mech.(ICNM) Shanghai 1985, p. 155Google Scholar
  48. 48.
    Müller, I.: Arch. Rat. Mech. Anal. 41 (1971) 319MATHCrossRefGoogle Scholar
  49. 49.
    see [38], Kap.VI.2Google Scholar
  50. 50.
    Müller, I.: in Lecture Notes in Physics 199. Berlin: Springer 1984, p. 32Google Scholar
  51. 51.
    Meixner, J.: Z. Physik 219 (1969) 79ADSCrossRefGoogle Scholar
  52. 52.
    Day, W.A.: The Thermodynamics of Simple Material with Fading Memory, Springer Tracts in Natural Philosophie, Vol. 22. Berlin: Springer 1972, sec.3.4CrossRefGoogle Scholar
  53. 53.
    Keller, J.U.: Physica 53 (1971) 602ADSCrossRefGoogle Scholar
  54. 54.
    Bataille, J.; Kestin J.: J. Mécanique 14 (1975) 365MATHADSMathSciNetGoogle Scholar
  55. 55.
    Gurtin, M.E.; Williams, W.: Arch. Rat. Mech. Anal. 26 (1967) 83MATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    Muschik, W.: in Reif, F.: Statistische Physik und Theorie der Wärme. Berlin: de Gruyter 1985, Abschn. 15.19Google Scholar
  57. 57.
    Muschik, W.: in Spencer, A. J. M. (ed.): Continuum Models of Discrete Systems. Rotterdam: Balkema 1987, p.39Google Scholar
  58. 58.
    Muschik, W.; Brunk, G.: Int. J. Engng. Sci. 15 (1977) 377MathSciNetCrossRefGoogle Scholar
  59. 59.
    Muschik, W.: Arch. Rat. Mech. Anal. 66 (1977) 379MathSciNetCrossRefGoogle Scholar
  60. 60.
    Muschik, W.: Int. J. Engng. Sci. 18 (1980) 1399MATHMathSciNetCrossRefGoogle Scholar
  61. 61.
    Müller, W.H.; Muschik, W.: J. Non-Equilib. Thermodyn. 8 (1983) 29ADSCrossRefGoogle Scholar
  62. 62.
    Muschik, W.; Riemann, H.: J. Non-Equilib. Thermodyn. 4 (1979) 17ADSCrossRefGoogle Scholar
  63. 63.
    Muschik, W.: J. Non-Equilib. Thermodyn. 8 (1983) 219ADSCrossRefGoogle Scholar
  64. 64.
    Muschik, W.: J. Non-Equilib. Thermodyn. 4 (1979) 377ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1988

Authors and Affiliations

  • W. Muschik
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlin 12Germany

Personalised recommendations