Advertisement

ESR Study of Metallic Complexes of Alkali-Doped Polyacetylene

  • F. Rachdi
  • P. Bernier
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 76)

Abstract

We have followed the dependence of ESR linewidth (ΔH ) of highly alkali-metal doped polyacetylene on the nature of the dopant and on the temperature in the range from 4 K to 300 K. The room-temperature linewidth increases with increasing atomic number (z) of the dopant and seems to follow a zα-law with a ≃ 2.3 ± 0.7 which is close to the z4 law expected for metals. This linewidth behaviour suggests a significant contribution from the spin-orbit coupling of the unpaired electrons on the dopant site. Thus, according to Elliott’s model, we have been able, in the case of Li-, K-and CS-doped films, to estimate the expected electronic g-factor deviations from the free-electron g-value. The linewidth decreases quasi-linearly with decreasing temperature down to ∽80 K where it starts to increase. This temperature behaviour can be analyzed in terms of gradual transition from delocalized states at high temperature, where interchain electron hopping plays a dominant role, to localized states at low temperature where electrons are mainly confined along the chains.

Keywords

Dopant Atom Metallic Complex Dopant Site Naphthalene Complex Longitudinal Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ikehata, J. Kaufer, T. Woerner, A. Pron, M.A. Druy, A. Sivak, A.J. Heeger and A.G. MacDiarmid, Phys. Rev. Lett. 45, 1123 (1980)CrossRefGoogle Scholar
  2. 2.
    Y.W, Park, A. Denenstein, C.K. Chiang, A.J. Heeger, A.C. MacDiarmid, Solid St. Comm., 29, 747 (1979)CrossRefGoogle Scholar
  3. 3.
    A.J. Epstein, H. Rommelmann, R. Bigelow, H.W. Gibson, D.M. Hoffmann and D.B. Turner, J. Physique Paris, C3, 44, 61 (1983)Google Scholar
  4. 4.
    M. Audenaert, F. Rachdi, R. Bernier, Synth. Met. 15, 91 (1986)CrossRefGoogle Scholar
  5. 5.
    R.J. Elliott, Phys. Rev., 96, 266 (1954)CrossRefGoogle Scholar
  6. 6.
    F. Rachdi, R. Bernier, E. Faulques, S. Lefrant, F. Schué, J. Chem. Phys., 80, 6285 (1984)CrossRefGoogle Scholar
  7. 7.
    B. Francois, M. Bernard, J.J. André, J. Chem. Phys., 75, 4142 (1981)CrossRefGoogle Scholar
  8. 8.
    A. Elkhodary, R. Bernier, J. Phys. (Paris) Lett., 45, 551 (1984)Google Scholar
  9. 9.
    F. Rachdi, R. Bernier, F. Schue, Mol. Cryst. Lip. Cryst. 117, 121 (1985)CrossRefGoogle Scholar
  10. 10.
    R.L. Elsenbaumer, R. Delannoy, G.G. Miller, C.E. Forbes, N.S. Murphy, H. Eckhardt, R.H. Baughman, Synth. Met. 11, 251 (1985)CrossRefGoogle Scholar
  11. 11.
    F. Rachdi, R. Bernier, Phys. Rev. B. 33, 7817 (1986)Google Scholar
  12. 12.
    L.D. Kispert, J. Joseph, G.G. Miller, R.H. Baughman, J. Chem. Phys. 81, 2119(1984)CrossRefGoogle Scholar
  13. 13.
    R. Lauginie, H. Estrade, J. Conard, D. Guerard, R. Lagrange, M.El. Makrini, Physica B 99, 514 (1980)Google Scholar
  14. 14.
    Y. Yafet, Solid St. Phys. 14, 1 (1963)CrossRefGoogle Scholar
  15. 15.
    F. Moraes, J. Chen, T.C. Chung, A.J. Heeger, Synth. Met. 11, 271 (1985)CrossRefGoogle Scholar
  16. 16.
    R.H. Baughman, N.S. Murphy, G.G. Miller, J. Chem. Phys. 79, 515 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • F. Rachdi
    • 1
  • P. Bernier
    • 1
  1. 1.Groupe de dynamique des phases condensées (CNRS)USTLMontpellierFrance

Personalised recommendations