Turbulence Management by Groove Roughness

  • I. Tani
  • H. Munakata
  • A. Matsumoto
  • K. Abe
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


Measurements were made of mean velocity profiles for smooth-wall and d-type groove-rough-wall turbulent boundary layers in zero pressure gradient when perturbed by a spanwise rod attached to the wall. Using Coles law of the wall and law of the wake, the skin friction and wake parameter were evaluated from the velocity measurements. It was deduced from the result of evaluation that equilibrium could exist only for rough-wall boundary layers, in which the effect of perturbation approaches monotonically to a new equilibrium state different from that of the original flow. Suggestions are made on the possibilities of drag reduction by providing the boundary layer with the feature of equilibrium.


Boundary Layer Skin Friction Turbulent Boundary Layer Drag Reduction Smooth Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coles, D.: The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1 (1956) 191–226.MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Clauser, F. H.: Turbulent boundary layers in adverse pressure gradients. J. Aeron. Sci. 21 (1954) 91–108.Google Scholar
  3. 3.
    Townsend, A. A.: The Structure of Turbulent Shear Flow. Cambridge University Press 1956.Google Scholar
  4. 4.
    Herring, H. J.; Norbury, J. F.: Some experiments on equilibrium turbulent boundary layers in favourable pressure gradients. J. Fluid Mech. 27 (1967) 541–549.ADSCrossRefGoogle Scholar
  5. 5.
    Bradshaw, P.: The turbulence structure of equilibrium boundary layers. J. Fluid Mech. 29 (1967) 625–645.ADSCrossRefGoogle Scholar
  6. 6.
    East, L. F.; Sawyer, W. G.: An investigation of the structure of equilibrium turbulent boundary layers. AGARD CP No. 271 (1980) 6. 1–6. 19.Google Scholar
  7. 7.
    Nash, J. F.: Turbulent-boundary-layer behaviour and the auxiliary equation. ARC CP No. 835 (1966).Google Scholar
  8. 8.
    Coles, D.: The turbulent boundary layer in a compressible fluid. Rand Corp., Rep. R-403-PR (1962).Google Scholar
  9. 9.
    Coles, D.: The young person’s guide to data. Proc. 1968 AFOSR-IFP-Stanford Conference on Computation of Turbulent Boundary Layers 2 (1969) 1–45.Google Scholar
  10. 10.
    Green, J. E.; Weeks, D. J.; Brooman, J. W. F.: Prediction of turbulent boundary layers and wakes in compressible flow by a lag-entrainment method. ARC R & M No. 3791 (1973).Google Scholar
  11. 11.
    Rotta, J. C.: Turbulent boundary layers in incompressible flow. Prog. Aeron. Sci. 2 (1962) 1–219.CrossRefGoogle Scholar
  12. 12.
    Tani, I.; Motohashi, T.: Non-equilibrium behavior of turbulent boundary layer flows. Proc. Jpn. Acad. B 61 (1985) 333340Google Scholar
  13. 13.
    Tani, I.: Some equilibrium turbulent boundary layers. Fluid Dyn. Res. 1 (1986) 49–58.Google Scholar
  14. 14.
    Lewkowicz, A. K.: An improved universal wake function for turbulent boundary layers and some of its consequences. Z. Flugwiss. Weltraumforsch. 6 (1982) 261–266.MATHGoogle Scholar
  15. 15.
    Perry, A. E.; Schofield, W. H.; Joubert, P. N.: Rough-wall turbulent boundary layers. J. Fluid Mech. 37 (1969) 383–413.ADSCrossRefGoogle Scholar
  16. 16.
    Wood, D. H.; Antonia, R. A.: Measurements in a turbulent boundary layer over a d-type surface roughness. ASME J. Appl. Mech. 42 (1975) 591–597.ADSCrossRefGoogle Scholar
  17. 17.
    Osaka, H.; Nakamura, I.; Kageyama, Y.: Time averaged quantities of a turbulent boundary layer over a d-type rough surface (in Japanese). Trans. Jpn. Soc. Mech. Engrs. B50 (1984) 2299–2306.CrossRefGoogle Scholar
  18. 18.
    Bandyopadhyay, P. R.: The performance of smooth-wall drag reducing outer-layer devices in rough-wall boundary layers. AIAA Paper 85–0558 (1985).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • I. Tani
    • 1
  • H. Munakata
    • 2
  • A. Matsumoto
    • 2
  • K. Abe
    • 2
  1. 1.National Aerospace LaboratoryJindaiji, Chofu, Tokyo, 182Japan
  2. 2.Department of Aerospace EngineeringNihon UniversityNarashinodai, Funabashi, 274Japan

Personalised recommendations