Skip to main content

Thermal Enhancement of the Cell Killing Effect of X-Irradiation in Mammalian Cells in Vitro and in a Transplantable Mouse Tumor: Influence of pH, Thermotolerance, Hypoxia, or Misonidazole

  • Conference paper

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 109))

Abstract

Many experimental results indicate that the lethal effects of X-irradiation on mammalian cells are the result of damage to DNA. Radiosensitization by hyperthermia, i. e., treatment at temperatures in the range of 42° –47° C, is caused by inhibition of the repair of radiation-induced damage (Bronk 1976). Most of the lethal effects induced by hyperthermia alone are presumably due to damage to other cellular targets, including the plasma membrane and other membrane structures of the cell (Hahn 1982). Both the direct cell-killing effect of hyperthermia and radiosensitization might be exploited in the clinical application of hyperthermia.

Part of the research described here was supported by grants from the KWF (Koningin Wilhelmina Fonds) and from the 1RS (Interuniversitair Instituut voor Radiopathologie en Stralenbescherming).

We thank Mrs. H. Erkelens for the careful typing of the manuscript.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bleehen NM, Honess DJ, Morgan JE (1978) The combined effects of hyperthermia and hypoxic cell sensitizers. In: Streffer C et al. (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 62–71

    Google Scholar 

  • Bronk BV (1976) Thermal potentiation of mammalian cell killing: clues for understanding and potential for tumor therapy. Adv Radiat Biol 6: 276–324

    Google Scholar 

  • Brown JM (1975) Selective radiosensitization of the hypoxic cells of mouse tumors with the nitroimidazoles metronidazole and RO-07-0582. Radiat Res 64: 633–647

    Article  PubMed  CAS  Google Scholar 

  • Brown JM (1977) Cytotoxic effects of the hypoxic cell radiosensitizer RO-07-0582 to tumor cells in vivo. Radiat Res 72: 469–486

    Article  PubMed  CAS  Google Scholar 

  • Denekamp J, Terry NHA, Sheldon PW, Chu AM (1979) The effect of pentobarbital anesthesia on the radiosensitivity of four mouse tumours. Int J Radiat Biol 35: 277–280

    Article  CAS  Google Scholar 

  • Denekamp J, Hirst DG, Stewart FA, Terry NHA (1980) Is tumour radiosensitization by misonidazole a general phenomenon? Br J Cancer 41: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Elkind MM, Whitmore GF (1967) The radiobiology of cultured mammalian cells. Gordon and Breach, New York

    Google Scholar 

  • Field SB, Anderson RL (1982) Thermotolerance: a review of observations and possible mechanisms. Nat Cancer Inst Monogr 61: 193–199

    PubMed  CAS  Google Scholar 

  • Field SB, Morris CC (1983) The relationship between heating time and temperature: its relevance to clinical hyperthermia. Radiother Oncol 1: 179–186

    Article  PubMed  CAS  Google Scholar 

  • Fowler JF, Adams GE, Denekamp J (1976) Radiosensitizers of hypoxic cells in solid tumours. Cancer Treat Rev 3: 227–256

    Article  PubMed  CAS  Google Scholar 

  • Freeman ML, Malcolm A (1985) Acid modification of thermal damage and its relationship to nutrient availability. Int J Radiat Oncol Biol Phys 11: 1823–1826

    Article  PubMed  CAS  Google Scholar 

  • Hahn GM (1982) Hyperthermia and cancer. Plenum, New York

    Google Scholar 

  • Hall EJ, Astor M, Geard C, Biaglow J (1977) Cytotoxicity of RO-07-0582; enhancement by hyperthermia and protection by cysteamine. Br J Cancer 35: 809–815

    Article  PubMed  CAS  Google Scholar 

  • Hartson-Eaton M, Malcolm AW, Hahn GM (1984) Radiosensitivity and thermosensitization of thermotolerant Chinese hamster cells and RIF-1 tumors. Radiat Res 99: 175–184

    Article  PubMed  CAS  Google Scholar 

  • Haveman J (1983 a) Influence of a prior heat treatment on the enhancement by hyperthermia of X-ray induced inactivation of cultured mammalian cells. Int J Radiat Biol 43: 267–280

    Article  CAS  Google Scholar 

  • Haveman J (1983 b) Influence of pH and thermotolerance on the enhancement of X-ray induced inactivation of cultured mammalian cells by hyperthermia. Int J Radiat Biol 43: 281–289

    Article  CAS  Google Scholar 

  • Haveman J (1986) Enhancement of radiation effects by hyperthermia. In: Anghileri LJ, Robert J (eds) Hyperthermia in cancer treatment, vol I. CRC, Boca Raton, Florida, pp 169–181

    Google Scholar 

  • Haveman J, Jansen W, van der Schueren E, Breur K (1981) Radiosensitivity of microscopic tumours of a transplantable mammary adenocarcinoma in mice. Br J Cancer 43: 864–870

    Article  PubMed  CAS  Google Scholar 

  • Haveman J, Hart AAM, Wondergem J (1987) Thermal radiosensitization and thermotolerance in cultured cells from a murine mammary carcinoma. Int J Radiat Biol 51: 71–80

    Article  CAS  Google Scholar 

  • Henle KJ, Dethlefsen LA (1978) Heat fractionation and thermotolerance: a review. Cancer Res 38: 1843–1851

    PubMed  CAS  Google Scholar 

  • Henle KJ, Tomasovic SP, Dethlefsen LA (1979) Fractionation of combined heat and radiation in asynchronous CHO cells. 1. Effects on radiation sensitivity. Radiat Res 80: 369–377

    Article  PubMed  CAS  Google Scholar 

  • Holahan EV, Highfield DP, Holahan PK, Dewey WC (1984) Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance. Radiat Res 97: 108–131

    Article  PubMed  CAS  Google Scholar 

  • Holahan PK, Wong RSL, Thompson LL, Dewey WC (1986) Hyperthermic radiosensitization of thermotolerant Chinese hamster ovary cells. Radiat Res 107: 332–343

    Article  PubMed  CAS  Google Scholar 

  • Hume SP, Marigold JCL (1980) Transient heat-induced thermal resistance in the small intestine of mouse. Radiat Res 82: 526–535

    Article  PubMed  CAS  Google Scholar 

  • Hume SP, Marigold JCL (1985) Time-temperature relationships for hyperthermal radiosensitization in mouse intestine: influence of thermotolerance. Radiother Oncol 3: 165–171

    Article  PubMed  CAS  Google Scholar 

  • Kamura T, Nielsen OS, Overgaard J, Andersen AM (1982) Development of thermotolerance during fractionated hyperthermia in a solid tumor in vivo. Cancer Res 42: 1744–1748

    PubMed  CAS  Google Scholar 

  • Law MP, Ahier RG, Field SB (1979) The effect of prior heat treatment on the thermal enhancement of radiation damage in the mouse ear. Br J Radiol 52: 315–321

    Article  PubMed  CAS  Google Scholar 

  • Litchfield JF, Wilcoxon F (1949) A simplified method of evaluating dose effect experiments. J Pharmacol Exp Ther 96: 99–113

    PubMed  CAS  Google Scholar 

  • Marigold JCL, Hume SP (1983) Effect of prolonged heating on the thermal enhancement ratio in X-irradiated murine intestine. Int J Radiat Biol 44: 285–291

    Article  CAS  Google Scholar 

  • Nielsen OS (1983) Influence of thermotolerance on the interaction between hyperthermia and radiation in L1A2 cells in vitro. Int J Radiat Biol 43: 665–673

    Article  CAS  Google Scholar 

  • Nielsen OS (1986) Evidence for an upper temperature limit for thermotolerance development in L1A2 tumour cells in vitro. Int J Hyperthermia 2: 299–309

    Article  PubMed  CAS  Google Scholar 

  • Nielsen OS, Overgaard J, Kamura J (1983) Influence of thermotolerance on the interaction between hyperthermia and radiation in a solid tumour in vivo. Br J Radiol 56: 267–273

    Article  PubMed  CAS  Google Scholar 

  • Raaphorst GP, Azzam EI (1983) Thermal radiosensitization in Chinese hamster (V79) and mouse C3H 10T½ cells. The thermotolerance effect. Br J Cancer 48: 45–54

    Article  PubMed  CAS  Google Scholar 

  • Rajaratnam S, Adams GE, Stratford IJ, Clarke C (1982) Enhancement of the cytotoxicity of radiosensitizers by modest hyperthermia: the electron affinity relationship. Br J Cancer 46: 912–917

    Article  PubMed  CAS  Google Scholar 

  • Sheldon PW, Chu AM (1979) The effects of anesthetics on the radiosensitivity of a murine tumor. Radiat Res 79: 568–578

    Article  PubMed  CAS  Google Scholar 

  • Sheldon PW, Hill SA, Moulder JE (1977) Radioprotection by pentobarbitone sodium of a murine tumour in vivo. Int J Radiat Biol 32: 571–575

    Article  CAS  Google Scholar 

  • Shipley WU, Stanley JA, Steel GG (1975) Tumor size dependency in the radiation response of the Lewis lung carcinoma. Cancer Res 35: 2488–2493

    PubMed  CAS  Google Scholar 

  • Stanley JA, Shipley WA, Steel GG (1977) Influence of tumour size on hypoxic fraction and therapeutic sensitivity of Lewis’ tumour. Br J Cancer 36: 105–113

    Article  PubMed  CAS  Google Scholar 

  • Stratford IJ, Adams GE (1977) Effect of hyperthermia on differential toxicity of a hypoxic cell sensitizer RO-07-0582, on mammalian cells in vitro. Br J Cancer 35: 307–313

    Article  PubMed  CAS  Google Scholar 

  • Van Rijn J, van der Berg J, Schamhart DHJ, Van Wijk R (1984) Effect of thermotolerance on thermal radiosensitization in hepatoma cells. Radiat Res 97: 318–328

    Article  PubMed  Google Scholar 

  • Wondergem J, Haveman J (1984) A study on the effects of prior heat treatment on the skin reaction of mouse feet after heat alone or combined with X-rays: influence of misonidazole. Radioth Oncol 2: 159–170

    Article  CAS  Google Scholar 

  • Wondergem J, Haveman J (1985) Thermal enhancement of the radiation damage in the mouse foot at different heat and radiation dose: influence of thermotolerance. Int J Radiat Biol 48: 337–348

    Article  CAS  Google Scholar 

  • Wondergem J, Haveman J, van der Schueren E, van der Hoeven H, Breur K (1981) The influence of misonidazole on the radiation response of murine tumors of different size: possible artifacts caused by pentobarbital sodium anesthesia. Int J Radiat Oncol Biol Phys 7: 755–760

    Article  PubMed  CAS  Google Scholar 

  • Wondergem J, Haveman J, van der Schueren E, van der Hoeven H, Breur K (1982) Effect of hyperthermia and misonidazole on the radiosensitivity of a transplantable murine tumor: influence of factors modifying the fraction of hypoxic cells. Int J Radiat Oncol Biol Phys 8: 1323–1331

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haveman, J., Wondergem, J. (1988). Thermal Enhancement of the Cell Killing Effect of X-Irradiation in Mammalian Cells in Vitro and in a Transplantable Mouse Tumor: Influence of pH, Thermotolerance, Hypoxia, or Misonidazole. In: Hinkelbein, W., Bruggmoser, G., Engelhardt, R., Wannenmacher, M. (eds) Preclinical Hyperthermia. Recent Results in Cancer Research, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83263-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83263-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83265-9

  • Online ISBN: 978-3-642-83263-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics