Skip to main content

Some Basic Effects in Cellular Thermobiology

  • Conference paper
Application of Hyperthermia in the Treatment of Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 107))

Abstract

The purpose of this introductory review is to provide a brief summary of some of our recent experimental work in the field of thermal biology that might facilitate the understanding of the biological rationale of combining hyperthermia and radiotherapy in the treatment of cancer. Emphasis is placed on some molecular and cellular aspects of cell killing by heat and of hyperthermic radiosensitization; these appear to be distinct rather than related phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dertinger H, Jung H (1970) Molecular radiation biology. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Dewey WC (1983)Hyperthermia in cancer therapy. In: Broerse JJ, Barendsen GW, Kal HB, van der Kogel AG. (eds) Proceedings of the Seventh International Congress of Radiation Research. Martinus Nijhoff, Amsterdam, pp 517–527

    Google Scholar 

  • Dewey WC, Esch JL (1982) Transient thermal tolerance: cell killing and polymerase activities. Radiat Res 92:611–614

    Article  PubMed  CAS  Google Scholar 

  • Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE (1977) Cellular responses to combinations of hyperthermia and radiation. Radiology 123: 463–474

    PubMed  CAS  Google Scholar 

  • Dewey WC, Sapareto SA, Betten DA (1978) Hyperthermic radiosensitization of synchronous Chinese hamster cells: relationship between lethality and chromosomal aberrations. Radiat Res 76: 48–59

    Article  PubMed  CAS  Google Scholar 

  • Dikomey E, Franzke J (1986) Three classes of DNA strand breaks induced by X-irradiation and internal ß-rays. Int J Radiat Biol 50: 893–908

    Article  CAS  Google Scholar 

  • Dikomey E, Jung H (1987) Correlation between polymerase P activity and thermal radiosensitization in CHO cells. Recent Results Cancer Res (in press)

    Google Scholar 

  • Dikomey E, Eickhoff J, Jung H (1984) Thermotolerance and thermosensitization in CHO and RIH cells: a comparative study. Int J Radiat Biol 46: 181–192

    Article  CAS  Google Scholar 

  • Dikomey E, Becker W, Wielckens K (1987) Reduction of DNA-polymerase ß activity of CHO cells by single and combined heat treatments. Int J Radiat Biol (in press)

    Google Scholar 

  • Dube DK, Seal G, Loeb LA (1977) Differential heat sensitivity of mammalian DNA polymerases. Biochem Biophys Res Commun 76: 483–487

    Article  CAS  Google Scholar 

  • Eickhoff J, Dikomey E (1984)Development and decay of acutely induced thermotolerance in CHO cells by different heat shocks at various external pH values. In: Overgaard J. (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 91–94

    Google Scholar 

  • Gerweck LE, Delaney TF (1984) Persistence of thermotolerance in slowly proliferating plateau phase cells. Radiat Res 97: 365-372 Hahn GM (1982) Hyperthermia and cancer. Plenum, New York

    Google Scholar 

  • Henle KJ, Leeper DB (1976) Interaction of hyperthermia and radiation in CHO cells: recovery kinetics. Radiat Res 66: 505–518

    Article  PubMed  CAS  Google Scholar 

  • Henle KJ, Bitner AF, Dethlefsen LA (1979) Induction of thermotolerance by multiple heat fractions in Chinese hamster ovary cells. Cancer Res 39: 2486–2491

    PubMed  CAS  Google Scholar 

  • Jorritsma JBM, Burgman P, Kampinga HH, Konings AWT (1986) DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments. Radiat Res 105: 307–319

    Article  PubMed  CAS  Google Scholar 

  • Jung H (1986) A generalized concept for cell killing by heat. Radiat Res 106: 56–72

    Article  PubMed  CAS  Google Scholar 

  • Jung H, Dikomey E, Zywietz F (1986) Ausmaß und zeitliche Entwicklung der Thermoresistenz und deren Einfluß auf die Strahlenempfindlichkeit von soliden Transplantationstumoren. In: Streffer C, Herbst M, Schwabe H. (eds) Lokale Hyperthermic. Deutscher Ärzte-Verlag, Cologne, pp 23–38

    Google Scholar 

  • Kampinga HH, Jorritsma JBM, Konings AWT (1985) Heat-induced alterations in DNA polymerase activity of HeLa cells and of isolated nuclei. Relation to cell survival. Int J Radiat Biol 47: 29–40

    CAS  Google Scholar 

  • Kamura T, Nielsen OS, Overgaard J (1982) Development of thermotolerance during fractionated hyperthermia in a solid tumor in vivo. Cancer Res 42: 1744–1748

    PubMed  CAS  Google Scholar 

  • Kellerer AM, Rossi HH(1971) RBE and the primary mechanism of radiation action. Radiat Res 47:15–34

    Article  PubMed  CAS  Google Scholar 

  • Law MP (1981) The induction of thermal resistance in the ear of the mouse by heating at temperatures ranging from 41.5° C to 45.5° C. Radiat Res 85:126–134

    Article  PubMed  CAS  Google Scholar 

  • Li GC, Kal HB (1977) Effect of hyperthermia on the radiation response of two mammalian cell lines. Eur J Cancer 13: 65–69

    PubMed  CAS  Google Scholar 

  • Maher J, Urano M, Rice L, Suit HD (1981) Thermal resistance in a spontaneous murine tumor. Br J Radiol 54:1086–1090

    Article  PubMed  CAS  Google Scholar 

  • Mills MD, Meyn RE (1983) Hyperthermic potentiation of nonrejoined DNA strand breaks following irradiation. Radiat Res 95: 327–338

    Article  PubMed  CAS  Google Scholar 

  • Mivechi NF, Dewey WC (1985) DNA polymerase a and ß activities during the cell cycle and their role in heat radiosensitization in Chinese hamster ovary cells. Radiat Res 103: 337–350

    Article  PubMed  CAS  Google Scholar 

  • Mooibroek J, Zywietz F, Dikomey E, Jung H (1984)Thermotolerance kinetics and growth pattern changes in an experimental rat tumour (RIH) after hyperthermia. In: Overgaard J. (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 215–218

    Google Scholar 

  • Nielsen OS, Overgaard J (1982) Influence of time and temperature on the kinetics of thermotolerance in L1A2 cells in vitro. Cancer Res 42: 4190–4196

    PubMed  CAS  Google Scholar 

  • Roti Roti JL, Henle KJ (1980) Comparison of two mathematical models for describing heat-induced cell killing. Radiat Res 81: 374–383

    Article  Google Scholar 

  • Sciandra J J, Gerweck LE (1986)Thermotolerance in cells. In: Watmough DJ, Ross WM. (eds) Hyperthermia. Blackie, Glasgow, pp 99–120

    Google Scholar 

  • Spiro IJ, Denman DL, Dewey WC (1982) Effect of hyperthermia on CHO DNA polymerase α and β. Radiat Res 89:134–149

    Article  PubMed  CAS  Google Scholar 

  • Streffer C (1985) Metabolic changes during and after hyperthermia. Int J Hyperthermia 1: 305–319

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Jung, H., Dikomey, E. (1988). Some Basic Effects in Cellular Thermobiology. In: Issels, R.D., Wilmanns, W. (eds) Application of Hyperthermia in the Treatment of Cancer. Recent Results in Cancer Research, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83260-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83260-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83262-8

  • Online ISBN: 978-3-642-83260-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics