Advertisement

Functions

  • Parry Moon
  • Domina Eberle Spencer

Abstract

The purpose of this section is to provide a summary of the mathematical functions obtained as solutions of the differential equations of field theory. The summary is necessarily incomplete, since many of the functions have never been thoroughly investigated. In particular, almost nothing is known about the properties of the various wave functions. Recent tabulation of spheroidal wave functions is a beginning in this direction, but much remains to be done.

Keywords

General Solution Periodic Solution Bessel Function Series Solution Legendre Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [27]
    Frobenius, G. : Über die Integration der linearen Differentialgleichungen durch Reihen. J. reine angew. Math. 76, 214 (1873).CrossRefGoogle Scholar
  2. [28]
    Forsyth, A. R. : Theory of differential equations. Cambridge : Cambridge Univ. Press 1902; New York: Dover Publications 1959, Vol. IV.MATHGoogle Scholar
  3. [28a]
    Ince, E. L. : Ordinary differential equations. London: Longmans, Green & Co. 1927; New York: Dover Publications 1959, p. 396.MATHGoogle Scholar
  4. [29]
    Moon, P., and D. E. Spencer: Series solutions of Bôcher equations. (To be published.)Google Scholar
  5. [30]
    Nielsen, N. : Handbuch der Theorie der Cylinderfunktionen. Leipzig: B. G. Teubner 1904.Google Scholar
  6. [30a]
    Watson, G. N. : Theory of Bessel functions, p. 64. Cambridge: Cambridge Univ. Press 1944.MATHGoogle Scholar
  7. [31]
    Sturm, C, and J. Liouville: Extrait d’un mémoire sur le développement des fonctions en séries. J. de Math. 2, 220 (1837)Google Scholar
  8. [31a]
    Liouville, J.: Premier mémoire sur la théorie des équations différentielles linéaires et sur le développement des fonctions en séries. J. de Math. 3, 561 (1838).Google Scholar
  9. [31b]
    Churchill, R. V.: Fourier series and boundary value problems, p. 46. New York: McGraw-Hill Book Co. 1941.Google Scholar
  10. [32]
    Stratton, J. A.: Electromagnetic theory. New York: McGraw-Hill Book Co. 1941.MATHGoogle Scholar
  11. [32a]
    Ramo, S., and J. R. Whinnery: Fields and waves in modern radio. New York: John Wiley & Sons 1953Google Scholar
  12. [32b]
    Smythe, W. R. : Static and dynamic electricity. New York : McGraw-Hill Book Co. 1950.Google Scholar
  13. [32c]
    Southworth, C. : Principles and applications of waveguide transmission. Princeton, N. J.: D. Van Nostrand Co. 1950.Google Scholar
  14. [32d]
    Marcuvitz, N. : Waveguide handbook. New York: McGraw-Hill Book Co. 1951.Google Scholar
  15. [32e]
    McLachlan, N. W. : Bessel functions for engineers. London : Oxford Univ. Press 1934. — Theory and applications of Mathieu functions. London: Oxford Univ. Press 1947.Google Scholar
  16. [32f]
    Aharoni, J.: Antennae. London: Oxford Univ. Press 1946.MATHGoogle Scholar
  17. [32g]
    Kraus, J. D.: Antennas. New York: McGraw-Hill Book Co. 1950.Google Scholar
  18. [32h]
    Silver, S.: Microwave antenna theory and design. New York: McGraw-Hill Book Co. 1949.Google Scholar
  19. [32i]
    Ollendorff, F.: Potentialfelder der Elektrotechnik. Berlin: Springer 1932.Google Scholar
  20. [32j]
    Slater, J. C.: Microwave electronics. Princeton, N. J.: D. Van Nostrand Co. 1950.Google Scholar
  21. [32k]
    Fano, R. M., L. J. Chu and R. B. Adler: Electromagnetic fields, energy, and forces. New York: John Wiley & Sons 1960.MATHGoogle Scholar
  22. [32l]
    Adler, R. B., L. J. Chu and R. M. Fano: Electromagnetic energy transmission and radiation. New York : John Wiley & Sons 1960.MATHGoogle Scholar
  23. [32m]
    Wait, J. R. : Electromagnetic radiation from cylindrical structures. New York: Pergamon Press 1959MATHGoogle Scholar
  24. [32n]
    Morse, P. M., and H. Feshbach: Methods of theoretical physics. New York: McGraw-Hill Book Co. 1953.MATHGoogle Scholar
  25. [32o]
    Carslaw, H. S., and J. C. Jaeger: Conduction of heat in solids. London: Oxford Univ. Press 1947.MATHGoogle Scholar
  26. [32p]
    Ingersoll, L. R., O. J. Zobel and A. C. Ingersoll: Heat conduction, with engineering and geological applications. New York: McGraw-Hill Book Co. 1948.Google Scholar
  27. [32p]
    Muskat, M.: The flow of homogeneous fluids through porous media. New York: McGraw-Hill Book Co. 1937.MATHGoogle Scholar
  28. [32q]
    Born, M., and E. Wolf: Principles of optics. New York: Pergamon Press 1959.MATHGoogle Scholar

Weber functions

  1. [33]
    Weber, H. : Über die Integration der partiellen Differentialgleichung: ∂2 u/∂x 2 + ∂2u/∂y 2 + k 2 u = 0. Math. Ann. 1, 1 (1869).MathSciNetCrossRefGoogle Scholar
  2. [34]
    Hermite, C. : Sur un nouveau développement en série des functions. C. R. Acad. Sci., Paris 58, 93 (1864).Google Scholar
  3. [35]
    Whittaker, E. T., and G.N.Watson: Modem analysis, p. 347. Cambridge: Cambridge Univ. Press 1946.Google Scholar
  4. [35a]
    Ince, E. L. : Ordinary differential equations, p. 159. London: Longmans, Green & Co. 1927.MATHGoogle Scholar
  5. [35b]
    Whittaker, E. T. : On the functions associated with the parabolic cylinder in harmonic analysis. Proc. London Math. Soc. 35, 417 (1903).CrossRefMATHGoogle Scholar
  6. [35c]
    Watson, G. N. : The harmonic functions associated with the parabolic cylinder. Proc. London Math. Soc. 8, 393 (1910).CrossRefMATHGoogle Scholar
  7. [35d]
    Milne, A. : On the equation of the parabolic cylinder functions. Proc. Edinburgh Math. Soc. 32, 2 (1914).CrossRefMATHGoogle Scholar
  8. [35e]
    Hille, E.: On the zeros of the functions of the parabolic cylinder. Ark. Math., Astron. Fys. 18, 26 (1924).Google Scholar
  9. [35f]
    Wells, C. P., and R. D. Spence: The parabolic cylinder functions. J. Math. Phys. 24, 51 (1945).MathSciNetMATHGoogle Scholar
  10. [35g]
    Darwin, C. G.: On Weber’s function. Quart. J. Mech. Appl. Math. 2, 311 (1949).MathSciNetCrossRefMATHGoogle Scholar
  11. [35h]
    Miller, J. C. P. : On the choice of standard solutions for a homogeneous linear differential equation of the second order. Quar. J. Mech. Appl. Math. 3, 225 (1950). — A method for the determination of converging factors, applied to the asymptotic expansions for the parabolic cylinder functions. Proc. Cambridge Phil. Soc. 48, 243 (1952).CrossRefMATHGoogle Scholar
  12. [35i]
    Magnus, W., and F. Oberhettinger : Formeln und Sätze für die speziellen Funktionen der mathematischen Physik. Berlin: Springer 1943; New York: Chelsea Publ. Co. 1949.MATHGoogle Scholar
  13. [35j]
    ErdÉlyi, A., W. Magnus, F. Oberhettinger, and F. G. Tricomi: Higher transcendental functions, Vol. II, p. 115. New York: McGraw-Hill Book Co. 1953.Google Scholar

Tables of Weber functions

  1. [36]
    Janke, E., u. F. Emde: Tafeln höherer Funktionen, 4. Aufl. p. 27. Leipzig: B. G. Teubner 1948. Tables of the confluent hypergeometric functionFn, ½ x) and related functions. Washington, D. C. : Nat. Bu. Stds. 1949. Tables of Weber parabolic cylinder functions. London: H. M. Stationery Office 1955.Google Scholar

Bessel functions

  1. [37]
    Bessel, F. W. : Untersuchung des Teils der planetarischen Stoning, welcher aus Bewegung der Sonne entsteht. Beri. Abh. 1 (1824).Google Scholar
  2. [37a]
    Watson, G. N. : Theory of Bessel functions. Cambridge: Cambridge Univ. Press 1944.MATHGoogle Scholar
  3. [37b]
    Whittaker, E. T., and G.N.Watson: Modern analysis, Chap. 17. Cambridge: Cambridge Univ. Press 1946.Google Scholar
  4. [37c]
    Gray, A., G. B. Mathews and T. M. MacRobert: A treatise on Bessel functions. London: Macmillan Co. 1931.Google Scholar
  5. [37d]
    McLachlan, N. W. : Bessel functions for engineers. London : Oxford Univ. Press 1941.Google Scholar
  6. [37e]
    Neumann, F. : Beitràge zur Theorie der Kugelfunktionen. Leipzig: B. G. Teubner 1878.Google Scholar
  7. [37f]
    Heine, H. E.: Handbuch der Kugelfunktionen. Berlin: G. Reimer 1878.Google Scholar
  8. [37g]
    Nielsen, N.: Handbuch der Theorie der Cylinderfunktionen. Leipzig: B. G. Teubner 1904.Google Scholar
  9. [37h]
    Prasad, G. : A treatise on spherical harmonics and the functions of Bessel and Lamé. 2 vols. Benares: S. C. Chatterji 1932.Google Scholar
  10. [37i]
    Lense, J.: Kugelfunktionen. Leipzig: Akad. Verlagsges. 1950.MATHGoogle Scholar
  11. [37j]
    Byerly, W. E. : Fourier’s series and spherical, cylindrical, and ellipsoidal harmonics. Boston: Ginn & Co. 1893.MATHGoogle Scholar
  12. [37k]
    PÒckels, F.: Über die partielle Differentialgleichung Δu + K 2 u = 0 und deren Auftreten in der mathematischen Physik. Leipzig: B. G. Teubner 1891.Google Scholar

Tables of Bessel functions

  1. [38]
    Bateman, H., and R. C. Archibald: A guide to tables of Bessel functions. Math. Tables and Other Aids to Comp. 1, 205 (1944).MathSciNetCrossRefMATHGoogle Scholar
  2. [38a]
    Fletcher, A., J. C. P. Miller and L. Rosenhead: Index of mathematical tables. London: Sci. Computing Service 1946.MATHGoogle Scholar
  3. [38b]
    Jahnke, E., and F. Emde: Tables of functions, p. 126. New York: Dover Publications 1943.Google Scholar
  4. [38c]
    Watson, G. N.: Theory of Bessel functions, p. 666. Cambridge: Cambridge Univ. Press 1944.MATHGoogle Scholar
  5. [38d]
    Gray, A., G. B. Mathews and T. M. MacRobert: A treatise on Bessel functions. London: Macmillan Co. 1931.Google Scholar
  6. [38e]
    McLachlan, N. W.: Bessel functions for engineers. London: Oxford Univ. Press 1941. British Assn. for Adv. Sci.: Bessel functions, Vol. 6 and 10. Cambridge: Cambridge Univ. Press 1937 and 1952. Harvard Computation Lab.: Tables of the Bessel functions of the first kind, Vols. 3 to 14. Cambridge, Mass.: Harvard Univ. Press 1947 to 1951. — Tables of the modified Hankel functions of order one-third and their derivatives. Cambridge, Mass. : Harvard Univ. Press 1945.Google Scholar
  7. [38f]
    Cambi, E. : Tables of Bessel functions of the first kind, to all significant orders. New York: Dover Publications 1948. Nat. Bu. Stds.: Table of J 0 (z) and J 1(z) for complex arguments. New York: Columbia Univ. Press 1947. — Tables of spherical Bessel functions. New York: Columbia Univ. Press 1947. — Tables of Bessel functions Y 0 (z) and J 1(z) for complex arguments. New York: Columbia Univ. Press 1950. — Tables of Bessel functions of fractional order, 2 vols. New York: Columbia Univ. Press 1948.MATHGoogle Scholar
  8. [38g]
    Onoe, M. : Tables of modified quotients of Bessel functions of the first kind and real and imaginary arguments. New York: Columbia Univ. Press 1958. — Tables of the Bessel functions Y 0 (x), Y 1 (x), K 0 (x), K 1 (x), 0 ≦x1. Washington, D. C. : Nat. Bu. Stds. 1948.MATHGoogle Scholar
  9. [39]
    Baer, C. : Die Funktion des parabolischen Cylinders. Gymnasialprogramm, Cüstrin, 1883. — Parabolische Coordinaten. Frankfurt 1888.Google Scholar

Mathieu functions

  1. [40]
    Mathieu, E. : Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique. J. de Math. 13, 137 (1868).Google Scholar
  2. [41]
    Curtis, M. F. : The existence of the functions of the elliptic cylinder. Ann. of Math. 20, 23 (1918).MathSciNetCrossRefMATHGoogle Scholar
  3. [41a]
    Humbert, P.: Fonctions de Lamé et fonctions de Mathieu. (Mém. des sci. math.) Paris: Gauthier-Villars 1926.MATHGoogle Scholar
  4. [41b]
    Dhar, S. C. : Elliptic cylinder functions of second kind. Bull. Calcutta Math. Soc. 18, 11 (1927).Google Scholar
  5. [41c]
    Ince, E. L. : The elliptic cylinder functions of the second kind. Proc. Edinburgh Math. Soc. 33, 2 (1914). — Researches into the characteristic numbers of the Mathieu equation. Proc. Roy. Soc. Edinburgh 46, 20, 316 (1925); 47, 294 (1927). — Ordinary differential equations, p. 175. London: Longmans, Green & Co. 1927. — Tables of elliptic-cylinder functions. Proc. Roy. Soc. Edinburgh 52, 355 (1932).CrossRefGoogle Scholar
  6. [41d]
    Goldstein, S.: Mathieu functions. Trans. Cambridge Phil. Soc. 23, 303 (1927). — The second solution of Mathieu’s differential equation. Proc. Cambridge Phil. Soc. 24, 223 (1928).Google Scholar
  7. [41e]
    Varma, R. S.: On Mathieu functions. J. Indian Math. Soc. 19, 49 (1931).Google Scholar
  8. [41f]
    Barrow, W. L. : Untersuchen über den Heulsummer. Ann. d. Phys. 11, 147 (1931).ADSCrossRefGoogle Scholar
  9. [41g]
    Strutt, M. J. O. : Lamésche, Mathieusche und verwandte Funktionen in Physik und Technik. Berlin: Springer 1932.Google Scholar
  10. [41h]
    Whittaker, E. T., and G. N. Watson: Modern analysis, Chap. 19. Cambridge: Cambridge Univ. Press. 1946.Google Scholar
  11. [41i]
    Blanch, G. : Computation of Mathieu functions. J. Math. Phys. 25, 1 (1946).MathSciNetMATHGoogle Scholar
  12. [41j]
    McLachlan, N. W. : Mathieu functions and their classification. J. Math. Phys. 25, 209 (1946).MathSciNetMATHGoogle Scholar
  13. [42]
    McLachlan, N. W. : Theory and application of Mathieu functions, p. 19. London: Oxford Univ. Press 1947.MATHGoogle Scholar
  14. [43]
    Morse, P. M., and H. Feshbach: Methods of mathematical physics. New York: McGraw-Hill Book Co. 1953.Google Scholar
  15. [43a]
    Meixner, J., u. F. W. Schàrke: Mathieusche Funktionen und Sphäroidfunktionen. Berlin: Springer 1954.Google Scholar
  16. [43b]
    Campbell, R. : Théorie générale de l’équation de Mathieu. Paris: Masson & Cie. 1955.MATHGoogle Scholar

Tables of Mathieu functions

  1. [44]
    Fletcher, A. F., J. C. P. Miller and L. Rosenhead: An index of mathematical tables, p. 328. London: Sci. Comp. Service 1946.MATHGoogle Scholar
  2. [44a]
    Stratton, J. A., P. M. Morse, L. J. Chu and R. A. Hutner: Elliptic cylinder and spheroidal wave functions. New York: John Wiley & Sons 1941. Tables relating to Mathieu functions. New York: Columbia Univ. Press 1951.Google Scholar
  3. [44b]
    Janke, E., u. F. Emde: Tafeln höherer Funktionen. Leipzig: B. G. Teubner 1948.Google Scholar
  4. [44c]
    Ince, E. L. : Tables of elliptic-cylinder functions. Proc. Roy. Soc. Edinburgh 52, 355 (1932).Google Scholar
  5. [44d]
    Goldstein, S. : Mathieu functions. Trans. Cambridge Phil. Soc. 23, 303 (1927).Google Scholar

Legendre functions

  1. [45]
    Legendre, A. M. : Sur l’attraction des sphéroldes. Mém. Math. Phys. 10 (1785).Google Scholar
  2. [45a]
    Hobson, E. W. : The theory of spherical and ellipsoidal harmonics. Cambridge: Cambridge Univ. Press 1931.Google Scholar
  3. [45b]
    Heine, E.: Kugelfunktionen. Berlin: G. Reimer 1878.Google Scholar
  4. [45c]
    Byerly, W. E. : Fourier’s series and spherical, cylindrical, and ellipsoidal harmonics. Boston: Ginn & Co. 1893.MATHGoogle Scholar
  5. [45d]
    Prasad, G. : Spherical harmonics and the functions of Bessel and Lamé, 2 vols. Benares: S. C. Chatterji 1930.Google Scholar
  6. [45e]
    Whittaker, E. T., and G.N.Watson: Modern analysis, Chap. 15. Cambridge: Cambridge Univ. Press 1946.Google Scholar
  7. [45f]
    MacRobert, T. M. : Spherical harmonics. New York: Dover Publications 1948.MATHGoogle Scholar
  8. [45g]
    Robin, L. : Fonctions sphériques de Legendre et fonctions sphéroidales, 3 vols. Paris: Gauthier-Villars 1959.Google Scholar

Tables of Legendre functions

  1. [46]
    Davis, H. T. : A bibliography and index of mathematical tables. Evanston, III. 1949.Google Scholar
  2. [46a]
    Jahnke, E., and F. Emde: Tables of functions, 3rd Edition p. 119. Leipzig: B. G. Teubner 1938.Google Scholar
  3. [46b]
    Fowle, F. E.: Smithsonian physical tables, p. 66. Washington, D.C. 1933. Nat. Bu. Stds.: Table of associated Legendre functions. New York: Columbia Univ. Press 1945.Google Scholar
  4. [46c]
    Mursi, Z. : Table of Legendre associated functions. Cairo: Fouad I Univ. 1941.Google Scholar
  5. [46d]
    TallquisT, H.: Tafeln der Kugelfunktionen. Acta Soc. Sci. Fenn. 32, No. 6 (1906); 33, Nos. 4 and 9 (1908); 6, Nos. 3 and 10 (1932); 2, No. 4 (1937); 2, No. 11 (1938).Google Scholar
  6. [46e]
    Stratton, J. A., P. M. Morse, L. J. Chu, J. D. C. Little, and F. J. CorbÁto: Spheroidal wave functions. New York: John Wiley & Sons 1956.MATHGoogle Scholar
  7. [46f]
    Flammer, C. : Spheroidal wave functions. Stanford, Cal. : Stanford Univ. Press 1957.MATHGoogle Scholar

Lamé functions

  1. [47]
    LamÉ, G. : Leçons sur les coordonnées curvilignes et leurs diverses applications. Paris: Mallet-Bachelier 1859.Google Scholar
  2. [47a]
    Todhunter, I. : An elementary treatise on Laplace’s functions, Lamé’s functions, and Bessel’s functions. London: Macmillan Co. 1875.MATHGoogle Scholar
  3. [47b]
    Heine, H. E.: Handbuch der Kugelfunktionen. Berlin: G. Reimer 1878.Google Scholar
  4. [47c]
    Klein, F.: Über Lamésche Funktionen. Math. Ann. 18, 237 (1881).MathSciNetCrossRefGoogle Scholar
  5. [47d]
    Byerly, W. E. : Fourier’s series and spherical, cylindrical, and ellipsoidal harmonics. Boston: Ginn & Co. 1893.MATHGoogle Scholar
  6. [47e]
    Niven, W. D.: On ellipsoidal harmonics. Phil. Trans. Roy. Soc. Lond. 182, 231 (1892).ADSGoogle Scholar
  7. [47f]
    Maclauren, R.: On the solutions of the equation (∇2 + K 2) ψ = 0 in elliptic coordinates and their physical applications. Trans. Cambridge Phil. Soc. 17, 41 (1898).Google Scholar
  8. [47g]
    Darwin, G. H. : Ellipsoidal harmonic analysis. Phil. Trans. Roy. Soc. Lond. 197, 461 (1901).ADSCrossRefMATHGoogle Scholar
  9. [47h]
    Humbert, P.: Fonctions de Lamé et fonctions de Mathieu. Paris: Gauthier-Villars 1926.MATHGoogle Scholar
  10. [47i]
    Hobson, E. W.: The theory of spherical and ellipsoidal harmonics, Chap. 11. Cambridge: Cambridge Univ. Press 1931.Google Scholar
  11. [47j]
    Prasad, G. : A treatise on spherical harmonics and the functions of Bessel and Lamé, 2 vols. Benares: S. C. Chatterji 1932.Google Scholar
  12. [47k]
    Strutt, M. J. O. : Lamésche, Mathieusche und verwandte Funktionen in Physik und Technik. Berlin: Springer 1932.Google Scholar
  13. [48]
    Wangerin, A. : Über die Reduktion der Gleichung ∂2 V/∂x 2 + ∂2 V/∂y 2 + ∂2 V/∂z 2 = 0 auf gewöhnliche Differentialgleichungen, Mber. Akad. Wiss, Berlin 152 (1878).Google Scholar
  14. [49]
    Heine, H. E.: Handbuch der Kugelfunktionen. Berlin: G. Reimer 1878.Google Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1961

Authors and Affiliations

  • Parry Moon
    • 1
  • Domina Eberle Spencer
    • 2
  1. 1.Department of Electrical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of MathematicsUniversity of ConnecticutStorrsUSA

Personalised recommendations