Rotational Systems

  • Parry Moon
  • Domina Eberle Spencer


Each of the 21 transformations of Section II yields one or two rotational coordinate systems, obtained by twirling the plane map about an axis. A tabulation of the most interesting of these systems is given in this section.


Prolate sinO 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [12]
    Klein, F. : Vorlesungen über lineare Differentialgleichungen der zweiten Ordnung. Bearbeitet von E. Ritter. Göttingen 1894.Google Scholar


  1. [13]
    Casey, M. : On cyclides and sphero-quartics. Phil. Trans. Roy. Soc. Lond. 161, 585 (1871)CrossRefMATHGoogle Scholar
  2. [13a]
    Darboux, G. : Remarques sur la théorie des surfaces orthogonales. C. R. Acad. Sci., Paris 59, 240 (1864). — Sur l’application des méthodes de la physique mathématique à l’étude des corps terminés par des cyclides. C. R. Acad. Sci., Paris 83, 1037, 1099(1876).Google Scholar
  3. [13b]
    Maxwell, J. C. : On the cyclide. Quart. J. Math. 9, ill (1868).Google Scholar


  1. [14]
    CooLIDGE, J. L.: A treatise on the circle and the sphere. London: Oxford Univ. Press 1916.MATHGoogle Scholar
  2. [14a]
    Darboux, G. : Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, p. 277. Paris: Gauthier-Villars 1910.MATHGoogle Scholar
  3. [14b]
    Jeans, J. H.: Electricity and magnetism. Cambridge: Cambridge Univ. Press 1925.Google Scholar
  4. [14c]
    Maxwell; J. C. : Electricity and magnetism. London: Oxford Univ. Press 1904.Google Scholar
  5. [14d]
    Schmidt, H. : Die Inversion und ihre Anwendung. Miinchen: R. Oldenbourg 1950.Google Scholar
  6. [14e]
    Thomson, W.: Extrait d’un lettre à M. Liouville. J. Math, pures appl. 10, 364 (1845). (The first use of inversion in electrostatics.) — Extraits de deux lettres adressées à M. Liouville. J. Math, pures appi. 12, 256 (1847).Google Scholar
  7. [14f]
    Liouville, J.: Note au sujet de l’article précédent. J. Math, pures appi. 12, 265 (1847).Google Scholar
  8. [14g]
    Thompson, W., and P. G. Tait: Treatise on natural philosophy, Part II, p. 62. Cambridge: Cambridge Univ. Press 1890.Google Scholar
  9. [14h]
    Wangerin, A.: Théorie des Potentials und der Kugelfunktionen, Bd. II, S. 147. Berlin: Walter de Gruyter 1921.MATHGoogle Scholar
  10. [14i]
    Weber, E.: Electromagnetic fields, p. 244. New York: John Wiley & Sons 1950.MATHGoogle Scholar
  11. [14j]
    Wrinch, D. M. : Inverted prolate spheroids. Phil. Mag. 14, 1061 (1932).Google Scholar
  12. [15]
    Moon, P., and D. E. Spencer: Cylindrical and rotational coordinate systems. J. Franklin Inst. 252, 327 (1951). — Some coordinate systems associated with elliptic functions. J. Franklin Inst. 255, 531 (1953).CrossRefMathSciNetGoogle Scholar

Theory of a complex variable

  1. [16]
    Churchill, R. V. : Complex variables and applications. New York: McGraw-Hill Book Co. 1960.MATHGoogle Scholar
  2. [16a]
    Knopp, K.: Theory of functions. New York: Dover Publications 1945.Google Scholar
  3. [16b]
    Nehari, Z.: Conformai mapping. New York: McGraw-Hill Book Co. 1952.Google Scholar
  4. [16c]
    Osgood, W. F.: Lehrbuch der Funktionentheorie. Leipzig: B. G. Teubner 1928.Google Scholar
  5. [16d]
    Rothe, R., F. Ollendorff and K. Pohlhausen: Theory of functions. Cambridge, Mass.: Technology Press 1933.Google Scholar
  6. [16e]
    Titchmarsh, E. C. : Theory of functions. London: Oxford Univ. Press 1932.Google Scholar
  7. [16f]
    Townsend, E. J.: Functions of a complex variable. New York: Henry Holt & Co. 1915.MATHGoogle Scholar
  8. [16g]
    Walker, M. : Conjugate functions for engineers. London : Oxford Univ. Press 1933.Google Scholar

Complex transformations

  1. [17]
    Kober, H.: Dictionary of conformai representations. New York: Dover Publications 1952.Google Scholar
  2. [17a]
    Love, A. E. H. : Some electrostatic distributions in two dimensions. Proc. London Math. Soc. 22, 337 (1924).CrossRefMATHGoogle Scholar
  3. [17b]
    Michell, J. H.: A map of the complex Z-function: a condenser problem. Messenger of Math. 23, 72 (1894).Google Scholar
  4. [17c]
    Greenhill, G. : Theory of a stream line past a plane barrier. Advisory Comm. for Aeronautics, Report No. 19, London 1910.Google Scholar

Applications of complex transformations

  1. [18]
    Andronescu, P. : Das parallel- und meridianebene Feld nebst Beispielen. Arch. Elektrotechn. 14, 379 (1924).CrossRefGoogle Scholar
  2. [18a]
    Bairstow, L. : Resistance of a cylinder moving in a viscous fluid. Phil. Trans. Roy. Soc. Lond. 223, 383 (1923).CrossRefMATHADSGoogle Scholar
  3. [18b]
    Glauert, H. : Elements of aerofoil and airscrew theory. Cambridge: Cambridge Univ. Press 1926.Google Scholar
  4. [18c]
    GrÖsser, W. : Einige elektrostatische Probleme der Hochspannungstechnik. Arch. Elektrotechn. 25, 193 (1931).CrossRefMATHGoogle Scholar
  5. [18d]
    HoltzmÜller, O.: Über die logarithmische Abbildung und die aus ihr ent-springenden orthogonalen Kurvensysteme. Z. Math. Phys. 16, 269 (1871). Beiträge zur Theorie der isogonalen Verwandtschaften. Z. Math. Phys. 18, 227 (1873). — Weitere Beiträge zur Theorie der isogonalen Verwandtschaften. Z. Math. Phys. 20, 1 (1875). — Einführung in die Theorie der isogonalen Verwandtschaften. Leipzig: B. G. Teubner 1882.Google Scholar
  6. [18e]
    Kehren, E. : Anwendung der konformen Abbildung in der Elektrostatik. Ann. d. Phys. 14, 367 (1932).CrossRefMATHADSGoogle Scholar
  7. [18f]
    Knight, R. C. : The potential of a circular cylinder between two infinite planes. Proc. London Math. Soc. 39, 272 (1933).CrossRefGoogle Scholar
  8. [18g]
    Labus, J.: Berechnung des elektrischen Feldes von Hochspannungstransformatoren mit Hilfe der konformen Abbildung. Arch. Elektrotechn. 19, 82 (1927). — Der Potential- und Feldverlauf längs einer Transformatorwicklung. Arch. Elektrotechn. 21, 250 (1928).CrossRefGoogle Scholar
  9. [18h]
    Levi-Civita, T.: Sopra un problema di elettrostatica che si è presentato nella consunzione dei cavi. Rend. Cire. Math. Palermo 20 (1905).Google Scholar
  10. [18i]
    Levy, H. : Discontinuous fluid motion past a curved boundary. Proc. Roy. Soc. Lond. 92, 285 (1915).ADSGoogle Scholar
  11. [18j]
    McLachlan, N. W. : Heat conduction in elliptical cylinder and an analogous electromagnetic problem. Phil. Mag. 36, 600 (1945).MATHMathSciNetGoogle Scholar
  12. [18k]
    Meyer, E. : Zwei Beispiele zweidimensionaler elektrostatischer Kraftlinienbilder. Math. Ann. 93, 157 (1925).CrossRefMathSciNetGoogle Scholar
  13. [18l]
    Morton, W. B. : The electrification of two intersecting planes. Phil. Mag. 1, 337 (1926). — On the parallel-plate condenser and other two-dimensional fields specified by elliptic functions. Phil. Mag. 2, 827 (1926).Google Scholar
  14. [18m]
    Nicholson, J. W. : The electrification of two parallel circular disks. Phil. Trans. Roy. Soc. Lond. 224, 303 (1923/24).CrossRefADSGoogle Scholar
  15. [18n]
    Page, W. M. : Some two-dimensional problems in electrostatics and hydrodynamics. Proc. London Math. Soc. 11, 313 (1913).CrossRefGoogle Scholar
  16. [18o]
    Petersohn, H. : Zweidimensionale elektrostatische Probleme. Z. Physik 38, 727 (1926).CrossRefADSGoogle Scholar
  17. [18p]
    Poole, E. G. C. : On the discontinuous motion produced in an infinite stream by two plane obstacles. Proc. London Math. Soc. 22, 425 (1924).CrossRefMATHGoogle Scholar
  18. [18q]
    Poritsky, H. : Field due to two equally charged parallel conducting cylinders. J. Math. Phys. 11, 213 (1932).Google Scholar
  19. [18r]
    Richmond, H. W. : On the electrostatic field of a plane or circular grating formed of thick rounded bars. Proc. London Math. Soc. 22, 389 (1924). — Notes on the use of the Schwartz-Christoffel transformation in electrostatics (and hydrodynamics). Proc. London Math. Soc. 22, 483 (1924).CrossRefMATHGoogle Scholar
  20. [18s]
    ROGOWSKI, W. : Die elektrische Festigkeit am Rande des Plattenkondensators. Arch. Elektrotechn. 12, 1 (1923).CrossRefGoogle Scholar
  21. [18t]
    Siebeck, F. H. : Über eine Gattung von Curven vierten Grades, welche mit den elliptischen Funktionen zusammenhängen. J. reine angew. Math. 57, 359 (1860).CrossRefMATHGoogle Scholar
  22. [18u]
    Thomson, J. J.: Recent researches in electricity and magnetism, Chap. 3. London: Oxford Univ. Press 1893.Google Scholar
  23. [18v]
    Weber, E. : Die konforme Abbildung in der elektrischen Festigkeitslehre. Arch. Elektrotechn. 17, 174 (1926).CrossRefGoogle Scholar
  24. [18i]
    Wright, C. E. : Note on the potential and attraction of rectangular bodies. Phil. Mag. 10, 110 (1930).Google Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1961

Authors and Affiliations

  • Parry Moon
    • 1
  • Domina Eberle Spencer
    • 2
  1. 1.Department of Electrical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of MathematicsUniversity of ConnecticutStorrsUSA

Personalised recommendations