Rotational Systems

  • Parry Moon
  • Domina Eberle Spencer


Each of the 21 transformations of Section II yields one or two rotational coordinate systems, obtained by twirling the plane map about an axis. A tabulation of the most interesting of these systems is given in this section.


Laplace Equation Rotational System Helmholtz Equation Coordinate Surface Important Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [12]
    Klein, F. : Vorlesungen über lineare Differentialgleichungen der zweiten Ordnung. Bearbeitet von E. Ritter. Göttingen 1894.Google Scholar


  1. [13]
    Casey, M. : On cyclides and sphero-quartics. Phil. Trans. Roy. Soc. Lond. 161, 585 (1871)CrossRefMATHGoogle Scholar
  2. [13a]
    Darboux, G. : Remarques sur la théorie des surfaces orthogonales. C. R. Acad. Sci., Paris 59, 240 (1864). — Sur l’application des méthodes de la physique mathématique à l’étude des corps terminés par des cyclides. C. R. Acad. Sci., Paris 83, 1037, 1099(1876).Google Scholar
  3. [13b]
    Maxwell, J. C. : On the cyclide. Quart. J. Math. 9, ill (1868).Google Scholar


  1. [14]
    CooLIDGE, J. L.: A treatise on the circle and the sphere. London: Oxford Univ. Press 1916.MATHGoogle Scholar
  2. [14a]
    Darboux, G. : Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, p. 277. Paris: Gauthier-Villars 1910.MATHGoogle Scholar
  3. [14b]
    Jeans, J. H.: Electricity and magnetism. Cambridge: Cambridge Univ. Press 1925.Google Scholar
  4. [14c]
    Maxwell; J. C. : Electricity and magnetism. London: Oxford Univ. Press 1904.Google Scholar
  5. [14d]
    Schmidt, H. : Die Inversion und ihre Anwendung. Miinchen: R. Oldenbourg 1950.Google Scholar
  6. [14e]
    Thomson, W.: Extrait d’un lettre à M. Liouville. J. Math, pures appl. 10, 364 (1845). (The first use of inversion in electrostatics.) — Extraits de deux lettres adressées à M. Liouville. J. Math, pures appi. 12, 256 (1847).Google Scholar
  7. [14f]
    Liouville, J.: Note au sujet de l’article précédent. J. Math, pures appi. 12, 265 (1847).Google Scholar
  8. [14g]
    Thompson, W., and P. G. Tait: Treatise on natural philosophy, Part II, p. 62. Cambridge: Cambridge Univ. Press 1890.Google Scholar
  9. [14h]
    Wangerin, A.: Théorie des Potentials und der Kugelfunktionen, Bd. II, S. 147. Berlin: Walter de Gruyter 1921.MATHGoogle Scholar
  10. [14i]
    Weber, E.: Electromagnetic fields, p. 244. New York: John Wiley & Sons 1950.MATHGoogle Scholar
  11. [14j]
    Wrinch, D. M. : Inverted prolate spheroids. Phil. Mag. 14, 1061 (1932).Google Scholar
  12. [15]
    Moon, P., and D. E. Spencer: Cylindrical and rotational coordinate systems. J. Franklin Inst. 252, 327 (1951). — Some coordinate systems associated with elliptic functions. J. Franklin Inst. 255, 531 (1953).CrossRefMathSciNetGoogle Scholar

Theory of a complex variable

  1. [16]
    Churchill, R. V. : Complex variables and applications. New York: McGraw-Hill Book Co. 1960.MATHGoogle Scholar
  2. [16a]
    Knopp, K.: Theory of functions. New York: Dover Publications 1945.Google Scholar
  3. [16b]
    Nehari, Z.: Conformai mapping. New York: McGraw-Hill Book Co. 1952.Google Scholar
  4. [16c]
    Osgood, W. F.: Lehrbuch der Funktionentheorie. Leipzig: B. G. Teubner 1928.Google Scholar
  5. [16d]
    Rothe, R., F. Ollendorff and K. Pohlhausen: Theory of functions. Cambridge, Mass.: Technology Press 1933.Google Scholar
  6. [16e]
    Titchmarsh, E. C. : Theory of functions. London: Oxford Univ. Press 1932.Google Scholar
  7. [16f]
    Townsend, E. J.: Functions of a complex variable. New York: Henry Holt & Co. 1915.MATHGoogle Scholar
  8. [16g]
    Walker, M. : Conjugate functions for engineers. London : Oxford Univ. Press 1933.Google Scholar

Complex transformations

  1. [17]
    Kober, H.: Dictionary of conformai representations. New York: Dover Publications 1952.Google Scholar
  2. [17a]
    Love, A. E. H. : Some electrostatic distributions in two dimensions. Proc. London Math. Soc. 22, 337 (1924).CrossRefMATHGoogle Scholar
  3. [17b]
    Michell, J. H.: A map of the complex Z-function: a condenser problem. Messenger of Math. 23, 72 (1894).Google Scholar
  4. [17c]
    Greenhill, G. : Theory of a stream line past a plane barrier. Advisory Comm. for Aeronautics, Report No. 19, London 1910.Google Scholar

Applications of complex transformations

  1. [18]
    Andronescu, P. : Das parallel- und meridianebene Feld nebst Beispielen. Arch. Elektrotechn. 14, 379 (1924).CrossRefGoogle Scholar
  2. [18a]
    Bairstow, L. : Resistance of a cylinder moving in a viscous fluid. Phil. Trans. Roy. Soc. Lond. 223, 383 (1923).CrossRefMATHADSGoogle Scholar
  3. [18b]
    Glauert, H. : Elements of aerofoil and airscrew theory. Cambridge: Cambridge Univ. Press 1926.Google Scholar
  4. [18c]
    GrÖsser, W. : Einige elektrostatische Probleme der Hochspannungstechnik. Arch. Elektrotechn. 25, 193 (1931).CrossRefMATHGoogle Scholar
  5. [18d]
    HoltzmÜller, O.: Über die logarithmische Abbildung und die aus ihr ent-springenden orthogonalen Kurvensysteme. Z. Math. Phys. 16, 269 (1871). Beiträge zur Theorie der isogonalen Verwandtschaften. Z. Math. Phys. 18, 227 (1873). — Weitere Beiträge zur Theorie der isogonalen Verwandtschaften. Z. Math. Phys. 20, 1 (1875). — Einführung in die Theorie der isogonalen Verwandtschaften. Leipzig: B. G. Teubner 1882.Google Scholar
  6. [18e]
    Kehren, E. : Anwendung der konformen Abbildung in der Elektrostatik. Ann. d. Phys. 14, 367 (1932).CrossRefMATHADSGoogle Scholar
  7. [18f]
    Knight, R. C. : The potential of a circular cylinder between two infinite planes. Proc. London Math. Soc. 39, 272 (1933).CrossRefGoogle Scholar
  8. [18g]
    Labus, J.: Berechnung des elektrischen Feldes von Hochspannungstransformatoren mit Hilfe der konformen Abbildung. Arch. Elektrotechn. 19, 82 (1927). — Der Potential- und Feldverlauf längs einer Transformatorwicklung. Arch. Elektrotechn. 21, 250 (1928).CrossRefGoogle Scholar
  9. [18h]
    Levi-Civita, T.: Sopra un problema di elettrostatica che si è presentato nella consunzione dei cavi. Rend. Cire. Math. Palermo 20 (1905).Google Scholar
  10. [18i]
    Levy, H. : Discontinuous fluid motion past a curved boundary. Proc. Roy. Soc. Lond. 92, 285 (1915).ADSGoogle Scholar
  11. [18j]
    McLachlan, N. W. : Heat conduction in elliptical cylinder and an analogous electromagnetic problem. Phil. Mag. 36, 600 (1945).MATHMathSciNetGoogle Scholar
  12. [18k]
    Meyer, E. : Zwei Beispiele zweidimensionaler elektrostatischer Kraftlinienbilder. Math. Ann. 93, 157 (1925).CrossRefMathSciNetGoogle Scholar
  13. [18l]
    Morton, W. B. : The electrification of two intersecting planes. Phil. Mag. 1, 337 (1926). — On the parallel-plate condenser and other two-dimensional fields specified by elliptic functions. Phil. Mag. 2, 827 (1926).Google Scholar
  14. [18m]
    Nicholson, J. W. : The electrification of two parallel circular disks. Phil. Trans. Roy. Soc. Lond. 224, 303 (1923/24).CrossRefADSGoogle Scholar
  15. [18n]
    Page, W. M. : Some two-dimensional problems in electrostatics and hydrodynamics. Proc. London Math. Soc. 11, 313 (1913).CrossRefGoogle Scholar
  16. [18o]
    Petersohn, H. : Zweidimensionale elektrostatische Probleme. Z. Physik 38, 727 (1926).CrossRefADSGoogle Scholar
  17. [18p]
    Poole, E. G. C. : On the discontinuous motion produced in an infinite stream by two plane obstacles. Proc. London Math. Soc. 22, 425 (1924).CrossRefMATHGoogle Scholar
  18. [18q]
    Poritsky, H. : Field due to two equally charged parallel conducting cylinders. J. Math. Phys. 11, 213 (1932).Google Scholar
  19. [18r]
    Richmond, H. W. : On the electrostatic field of a plane or circular grating formed of thick rounded bars. Proc. London Math. Soc. 22, 389 (1924). — Notes on the use of the Schwartz-Christoffel transformation in electrostatics (and hydrodynamics). Proc. London Math. Soc. 22, 483 (1924).CrossRefMATHGoogle Scholar
  20. [18s]
    ROGOWSKI, W. : Die elektrische Festigkeit am Rande des Plattenkondensators. Arch. Elektrotechn. 12, 1 (1923).CrossRefGoogle Scholar
  21. [18t]
    Siebeck, F. H. : Über eine Gattung von Curven vierten Grades, welche mit den elliptischen Funktionen zusammenhängen. J. reine angew. Math. 57, 359 (1860).CrossRefMATHGoogle Scholar
  22. [18u]
    Thomson, J. J.: Recent researches in electricity and magnetism, Chap. 3. London: Oxford Univ. Press 1893.Google Scholar
  23. [18v]
    Weber, E. : Die konforme Abbildung in der elektrischen Festigkeitslehre. Arch. Elektrotechn. 17, 174 (1926).CrossRefGoogle Scholar
  24. [18i]
    Wright, C. E. : Note on the potential and attraction of rectangular bodies. Phil. Mag. 10, 110 (1930).Google Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1961

Authors and Affiliations

  • Parry Moon
    • 1
  • Domina Eberle Spencer
    • 2
  1. 1.Department of Electrical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of MathematicsUniversity of ConnecticutStorrsUSA

Personalised recommendations