Skip to main content

Surface-Density Transitions, Surface Elasticity and Rigidity, and Rupture Strength of Lipid Bilayer Membranes

  • Conference paper
Physics of Amphiphilic Layers

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 21))

Abstract

Experimental advances have made possible direct measurements of cohesion, elasticity, and rigidity properties of surfactant double-layer membranes in aqueous media. Mechanical properties -- tension for rupture (expansion limit), elastic compressibility and surface rigidity -- are derived from pressurization of giant single-walled vesicles by micropipets. Area measurements as a function of temperature provide explicit definition of surface-density transitions at fixed state of stress. Special properties of crystalline-bilayer structures (e.g. ripple stiffness and energy of formation, shear rigidity and viscosity) are also measured. The effects of mixtures of phospholipids, cholesterol, and simple polypeptides on these properties have been established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Kwok and E. Evans: Biophys. J., 35, 637 (1981).

    Article  CAS  Google Scholar 

  2. E. Evans and R. Kwok: Biochem., 21, 4874 (1982).

    Article  CAS  Google Scholar 

  3. E. Evans and D. Needham: Faraday Discuss. Chem. Soc., No. 81 (1987, in-press)

    Google Scholar 

  4. E. Evans and R. Skalak: Mechanics and Thermodynamics of Biomembranes, ( CRC Press, Boca Raton, Fla., 1980 ).

    Google Scholar 

  5. E. Evans: In NATO Advanced Study Institute Textbook on Biorheology, Hwang and Gross, Eds. (Sitjhoff and Noordhoff Int., 1981 ) p. 137.

    Google Scholar 

  6. E. Evans and R.E. Waugh: J. Colloid Interface Sci., 60, 286 (1977).

    Article  CAS  Google Scholar 

  7. E. Evans: In Festkörperprobleme (Advances in Solid State Physics, Vol. 25), P. Grosse Ed. ( Vieweg, Braunschweig, 1985 ) p. 735.

    Google Scholar 

  8. Z. Derzko and K. Jacobson: Biochem., 19, 6050 (1980).

    Article  CAS  Google Scholar 

  9. P.G. Saffman and M. Delbruck: Proc. Natl. Acad. Sci. USA, 72, 3111 (1975).

    Article  CAS  Google Scholar 

  10. H.J. Galla, W. Hartmann, U. Theilen and E. Sackmann: J. Memb. Biol., 48, 215 (1979).

    Article  CAS  Google Scholar 

  11. E. Evans and R.M. HocFmuth: In Current Topics in Membranes and Transport, Vol. 10, F. Bronner and A. KleinzellerEds. ( Academic Press, New York, 1978 ) p. 1.

    Google Scholar 

  12. M. Bloom and I.C.P. Smith: In Progress in Protein-Lipid Interactions, Watts, De Pont Eds. (Elsevier, 1985 ) p. 61.

    Google Scholar 

  13. J.P. Reeves and R.M. Dowben: J. Cell. Biol., 73, 49 (1969).

    CAS  Google Scholar 

  14. D. Needham and E. Evans: Biochem. (to be submitted).

    Google Scholar 

  15. R.M. Servuss, W. Harbich and W. Helfrich: Biochim. et Biophys. Acta., 436, 900 (1978).

    Google Scholar 

  16. H. Engelhardt, H.P. Durve and E. Sackmann: J. Phys. Lett. (Paris), 46, L395 (1985).

    Google Scholar 

  17. M.B. Schneider, J.T. Jenkins and W.W. Webb: J. Phys. (Paris), 5, 1457 (1984).

    Google Scholar 

  18. E. Evans and D. Needham: J. Colloid Interface Sci. (to be submitted).

    Google Scholar 

  19. V. Luzzati: In Biological Membranes, D. Chapman Ed. ( Academic Press, New York, 1968 ) p. 71.

    Google Scholar 

  20. V. Luzzati and A. Tardieu: Ann. Rev. Phys. Chem., 25, 79 (1974).

    Article  CAS  Google Scholar 

  21. S.C. Chen, J.M. Sturtevant and B.J. Gaffney: Proc. Natl. Acad. Sci. USA, 77, 5060 (1980).

    Article  CAS  Google Scholar 

  22. M.J. Ruocco and G.G. Shipley: Biochim et Biophys. Acta, 691, 309 (1982).

    CAS  Google Scholar 

  23. M.J. Janiak, D.M. Small and G.G. Shipley: Biochem., 21, 4575 (1976).

    Google Scholar 

  24. J. Stamatoff, B. Fever, M.J. Guggenheim, G. Teller and T. Yamane: Biophys. J., 38, 217 (1982).

    Article  CAS  Google Scholar 

  25. R. Krebecek, C. Gebhardt, M. Gruber and E. Sackmann: Biochim. et Biophys. Acta, 554, 1 (1979).

    Google Scholar 

  26. G.W. Brady and D.B. Fein: Biochim. et Biophys. Acta, 646, 249 (1977).

    Google Scholar 

  27. J.H. Davis: Biophys. J., 27, 339 (1979).

    Article  CAS  Google Scholar 

  28. P.T. Wong: Ann. Rev. Biophys. Bioeng., 13, 1 (1984).

    Article  CAS  Google Scholar 

  29. P.J. Davis, B.D. Fleming, K.P. Coolbear and K.M. Keough: Biochem., 20, 3633 (1981).

    Article  CAS  Google Scholar 

  30. T.J. McIntosh: Biophys. J., 29, 237 (1980).

    Article  CAS  Google Scholar 

  31. G.N. Lewis and M. Randall: Thermodynamics ( McGraw Hill, New York, 1961 ).

    Google Scholar 

  32. E.J. Shimshick and H.M. McConnell: Biochem., 12, 2351 (1973).

    Article  Google Scholar 

  33. D. Chapman, J. Urbina and K.M. Keough: J. Biol. Chem., 249, 2512 (1974).

    CAS  Google Scholar 

  34. D. Needham, T.J. McIntosh and E. Evans: Biochem. (to be submitted).

    Google Scholar 

  35. S. Mabrey, P.L. Mateo and J.M. Sturtevant: Biochem., 17, 2464 (1978).

    Article  CAS  Google Scholar 

  36. M.R. Vist and J.H. Davis: (to be published).

    Google Scholar 

  37. F.T. Presti, R. J. Pace and S.I. Chan: Biochem., 21, 3831 (1982).

    CAS  Google Scholar 

  38. S. Marcelja: Biochim. et Biophys. Acta, 455, 1 (1976).

    CAS  Google Scholar 

  39. J.C. Owicki, M.W. Springgate and H.M. McConnell: Proc. Natl. Acad. Sci. USA, 75, 1616 (1978).

    Article  CAS  Google Scholar 

  40. G. Mouritsen and M. Bloom: Biophys. J., 46, 141 (1984).

    Article  CAS  Google Scholar 

  41. For chemically asymmetric bilayers, small induced bending moments act to wrinkle the membrane and produce tension in the surface.4 Also, self-adherence of the membrane due to long-range attractive forces can cause the surface to wrinkle and to be stressed. In these situations, the unsupported vesicle maintains a weakly rigid spherical shape.

    Google Scholar 

  42. Some hysteresis in the area versus temperature curves is observed. At the (liquid)/(liquid-solid) boundary, Tmelt is 1°C above Tfreeze for heating and cooling rates of 0.5°C/min and increases to 2°C for higher rates of temperature change. At the (solid-liquid)/(solid) boundary, very little hysteresis is seen: Tmelt-Tfreeze 0.5°C.

    Google Scholar 

  43. The peptides were gracious gifts from Dr. R. Hodges, University of Alberta, provided through Dr. M. Bloom, University of British Columbia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Evans, E., Needham, D. (1987). Surface-Density Transitions, Surface Elasticity and Rigidity, and Rupture Strength of Lipid Bilayer Membranes. In: Meunier, J., Langevin, D., Boccara, N. (eds) Physics of Amphiphilic Layers. Springer Proceedings in Physics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83202-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83202-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83204-8

  • Online ISBN: 978-3-642-83202-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics