Advertisement

Aspects of the Statistical Thermodynamics of Amphiphilic Solutions

  • R. E. Goldstein
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 21)

Abstract

Perhaps the most distinctive feature of solutions of amphiphilic molecules is that their microstructure depends sensitively on the bulk thermodynamic variables which specify the state of the system: Dilute solutions of surfactants are isotropic and homogeneous molecular dispersions, while micellar aggregates and a variety of liquid crystalline mesophases are encountered at progressively higher concentrations. Of particular interest in the present discussion is the interplay of self-association and phase equilibria, especially those involving the isotropic micellar phases which have been discussed extensively at this conference. In the following, we indicate some of the important conclusions of recent work in this area and highlight some fundamental open questions. The discussion below is divided into two sections, the first dealing with general aspects of phase equilibria in associating solutions, the second specializing to the neighborhood of second order phase transitions. A common theme here is the concept of effective interactions in micellar solutions, especially near critical points or points of rapidly changing microstructure.

Keywords

Lower Critical Solution Temperature Micellar Solution Effective Interaction Consolute Point Thermodynamic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Tanford, The Hydrophobic Effect,2nd ed. (Wiley, New York, 1980), and references therein.Google Scholar
  2. 2.
    D. Blankschtein, G.M. Thurston, and G.B. Benedek, J. Chem. Phys. 85, 7268 (1986), and references therein.Google Scholar
  3. 3.
    R.E. Goldstein, J. Chem. Phys. 84, 3367 (1986).CrossRefGoogle Scholar
  4. 4.
    F.H. Stillinger and A. Ben-Naim, J. Chem. Phys. 74, 2510 (1981).CrossRefGoogle Scholar
  5. 5.
    C.N. Yang and T.D. Lee, Phys. Rev. 87, 404 (1952).CrossRefGoogle Scholar
  6. 6.
    R.E. Goldstein and S. Leibler, unpublished.Google Scholar
  7. 7.
    B. Widom, J. Chem. Phys. 81, 1030 (1984).CrossRefGoogle Scholar
  8. 8.
    D. Roux and A.M. Bellocq, Phys. Rev. Lett. 52, 1895 (1984).CrossRefGoogle Scholar
  9. 9.
    M. Kotlarchyk, S.-H. Chen, J.S. Huang, and M.W. Kim, Phys. Rev. A 29, 2054 (1984).Google Scholar
  10. 10.
    See, e.g., D.J. Mitchell, G.J.T. Tiddy, L. Waring, T. Bostock, and M.P. McDonald, J. Chem. Soc. Faraday Trans. 179, 975 (1983).Google Scholar
  11. 11.
    R.E. Goldstein, A. Parola, N.W. Ashcroft, M.W. Pestak, M.H.W. Chan, J.R. de Bruyn, and D.A. Balzarini, Phys. Rev. Lett. 58, 41 (1987).CrossRefGoogle Scholar
  12. 13.
    J.L. Tveekrem, R.H. Cohn, and S.C. Greer, J. Chem. Phys. 86, 3602 (1987).CrossRefGoogle Scholar
  13. 14.
    B. Widom, J. Chem. Phys. 84, 6943 (1986).CrossRefGoogle Scholar
  14. 15.
    W. Hefner and F. Hensel, Phys. Rev. Lett. 48, 1026 (1982).CrossRefGoogle Scholar
  15. 16.
    S. Jüngst, B. Knuth, and F. Hensel, Phys. Rev. Lett. 55, 2160 (1985)CrossRefGoogle Scholar
  16. R.E. Goldstein and N.W. Ashcroft, ibid., 55, 2164 (1985).Google Scholar
  17. 17.
    V. Degiorgio, R. Piazza, M. Corti, and C. Minero, J. Chem. Phys. 82 1025 (1985), and references therein. Variable exponents also appear in microemulsionsGoogle Scholar
  18. A.M. Bellocq, P. Honorat, and D. Roux, J. Phys. 46, 743 (1985).CrossRefGoogle Scholar
  19. 18.
    Y. Shnidman, Phys. Rev. Lett. 56, 201 (1986).CrossRefGoogle Scholar
  20. For comments on this work, see R.G. Caflisch, M. Kaufman, and J.R. Banavar, Phys. Rev. Lett. 56, 2545 (1986)CrossRefGoogle Scholar
  21. L. Reatto, ibid. 58, 620 (1987).Google Scholar
  22. 19.
    M.E. Fisher, Phys. Rev. Lett. 57, 1914 (1986).Google Scholar
  23. 20.
    P. Seglar and M.E. Fisher, J. Phys. C 13, 6613 (1980).Google Scholar
  24. 21.
    C. Bagnuls and C. Bervillier, Phys.. Rev. Lett. 58, 435 (1987).CrossRefGoogle Scholar
  25. 22.
    See e.g. R.E. Goldstein and J.S. Walker, J. Chem. Phys. 78, 1492 (1983).CrossRefGoogle Scholar
  26. 23.
    A. Robledo, G.F. A.-Noaimi, and G. Martinez-Mekler, preprint (1987).Google Scholar
  27. 24.
    G.R. Anderson and J.C. Wheeler, J. Chem. Phys. 69, 2082, 3403 (1978).CrossRefGoogle Scholar
  28. 25.
    J.S. Walker and C.A. Vause, Phys. Lett. A 79, 421 (1980).CrossRefGoogle Scholar
  29. 26.
    R.E. Goldstein, J. Chem. Phys. 83, 1246 (1985).CrossRefGoogle Scholar
  30. 27.
    R.E. Goldstein, A. Parola, and J.J. Rehr, unpublished.Google Scholar
  31. 28.
    R.E. Goldstein, J. Chem. Phys. 79, 4439 (1983).CrossRefGoogle Scholar
  32. 29.
    R.P. Rand, Ann. Rev. Biophys. Bioeng. 10, 277 (1981).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • R. E. Goldstein
    • 1
  1. 1.Laboratory of Atomic and Solid State Physics and Materials Science CenterCornell UniversityIthacaUSA

Personalised recommendations