Skip to main content

Wärmeübergang beim Sieden reiner Stoffe in erzwungener Strömung

  • Chapter
Wärmeübergang beim Kondensieren und beim Sieden

Part of the book series: Wärme- und Stoffübertragung ((WÄRME))

  • 545 Accesses

Zusammenfassung

Während der Wärmeübergang beim Sieden einer Flüssigkeit in freier Strömung im wesentlichen durch die Differenz zwischen Heizflächen- und Siedetemperatur, die Eigenschaften der Flüssigkeit und die der Heizfläche bestimmt wird, spielen beim Sieden in erzwungener Strömung noch zusätzlich die Strömungsgeschwindigkeiten von dampfförmiger und flüssiger Phase und die Art der Phasenverteilung eine Rolle. Wie bereits in Kap. 9 dargelegt, ist der Wärmeübergangskoeffizient nicht mehr durch einfache empirische Korrelation der Form α = cq n darstellbar, sondern es kommen als weitere Einflußgrößen die Massenstromdichte \( \dot m \) und der Strömungsdampfgehalt x* hinzu, so daß empirische Wärmeübergangsbeziehungen von der Form α = cq n \( \dot m \) s f (x * ) sind. Die Art solcher Beziehung wird wesentlich durch die Strömungsform bestimmt, über die im folgenden Kapitel berichtet wird.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collier, J. G.: Convective boiling and condensation. New York: McGraw-Hill 1972

    Google Scholar 

  2. Baker, O.: Simultaneous flow of oil and gas. Oil Gas J. 53 (1954) 184–195

    Google Scholar 

  3. Hewitt, G. F.; Roberts, D. N.: Studies of two phase flow patterns by simultaneous X-ray and flash photography. UK At. Energy Agency Rep. No. AERE-M 2159, H.M.S.O., 1969

    Google Scholar 

  4. Taitel, Y.; Dukler, A. E.: A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. Am. Inst. Chem. Eng. J. 22 (1976) 47–55

    Article  Google Scholar 

  5. Rouhani, S. Z.: Void measurements in the region of subcooled and low quality boiling. Atomenergy AE-239, part 2, 1966

    Google Scholar 

  6. Plummer, D. N.: Post critical heat transfer to flowing liquid in a vertical tube. Ph.D. thesis, Mass. Inst. Technol. 1974

    Google Scholar 

  7. Hsu, Y. Y.: On the size of range of active nucleation cavities on a heating surface. Trans. Am. Soc. Mech. Eng., Ser. C. J. Heat Transfer 84 (1962) 207–216

    Google Scholar 

  8. Davis, E. J.; Anderson, G. H.: The incipience of nucleate boiling in forced convection flow. Am. Inst. Chem. Eng., J. 12(1966) 774–780

    Article  Google Scholar 

  9. Bergles, A. E.; Rohsenow, W. M.: The determination of forced-convection surface boiling heat transfer. Trans. Am. Soc. Mech. Eng., Ser. C. J. Heat Transfer 86 (1964) 365–372

    Google Scholar 

  10. Bankoff, S. G.: Entrapment of gas in the spreading of a liquid on a rough surface. Am. Inst. Chem. Eng. J. 4(1958) 24–26

    Article  Google Scholar 

  11. Bowring, R. W.: Physical model based on bubble detachment and calculation of steam voidage in the subcooled region of a heated channel. OECD Halden Reactor Project Report HPR-10 (1962)

    Google Scholar 

  12. Engelberg-Forster, K.; Grief, R.: Heat transfer to a boiling liquid-mechanism and correlations. Trans. Am. Soc. Mech. Eng., Ser. C. J. Heat Transfer 81(1959) 43–53

    Google Scholar 

  13. Bergles, A. E.; Rohsenow, W. M.: The determination of forced convection surface boiling heat transfer. Paper 63-HT-22. VIth Nat. Heat Transfer Conf. Am. Soc. Mech. Eng.-Amer. Soc. Chem. Eng., Boston 1963, siehe auch [13.9]

    Google Scholar 

  14. Jens, W. H.; Lottes, P. A.: Analysis of heat transfer burnout, pressure drop and density data for high pressure water. Rep. ANL-4627, 1951

    Book  Google Scholar 

  15. Thom, J. R. S.; Walker, W. M.; Fallon, T. A.; Reising, G. F. S.: Boiling in subcooled water during flow up heated tubes or annuli. Symp. Inst. Mech. Eng. paper 6. London: 1965

    Google Scholar 

  16. Dengler, C. E.; Addams, J. N.: Heat transfer mechanism for vaporization of water in a vertical tube. Chem. Eng. Progr. Symp. Ser. 52 (1956) 95–103

    Google Scholar 

  17. Chawla, J. M.: Wärmeübergang und Druckabfall in waagerechten Rohren bei der Strömung von verdampfenden Kältemitteln. VDI-Forschungsh. 523 (1967)

    Google Scholar 

  18. Stephan, K.; Auracher, H.: Correlations for nucleate boiling heat transfer in forced convection. Int. J. Heat Mass Transfer 24(1981) 99–107

    Article  Google Scholar 

  19. Steiner, D.: Wärmeübergang beim Sieden gesättigter Flüssigkeiten. In: VDI-Wärmeatlas, 4. Aufl. Düsseldorf: VDI-Verlag 1984, Abschn. Hbb

    Google Scholar 

  20. Pujol, L.: Boiling heat transfer in vertical upflow and downflow tubes. Ph.D. thesis, Lehigh Univ. 1968

    Google Scholar 

  21. Slipcevié, B.: Wärmeübergang beim Sieden von R-Kältemitteln in horizontalen Rohren. Kältetech. Klim. 24 (1972) 345–351

    Google Scholar 

  22. Chen, J. C.: Correlation for boiling heat transfer to saturated liquids in convective flow. Ind. Eng. Chem. Proc. Des. Dev. 5 (1966) 322–329

    Article  Google Scholar 

  23. Forster, H. K.; Zuber, N.: Dynamics of vapour bubbles and boiling heat transfer. Am. Inst. Chem. Eng. J. 4 (1955) 531–535

    Article  Google Scholar 

  24. Jallouk, P. A.: Two–phase pressue drop and heat transfer characteristics of refrigerants in vertical tubes. Ph.D. thesis, Univ. Tennessee, U. Microfilms 75–11–171, 1974

    Google Scholar 

  25. Gungor, K. E.; Winterton, R. H. S.: A general correlation for flow boiling in tubes and in annuli. Int. J. Heat Mass Transfer 29 (1986) 351–358

    Article  MATH  Google Scholar 

  26. Cooper, M. G.: Saturation nucleate pool boiling. A simple correlation. 1st UK Nat. Conf. Heat Transfer 2 (1984) 785–793

    Google Scholar 

  27. Guerrieri, S. A.; Talty, R. D.: A study of heat transfer to organic liquids in single-tube natural circulation vertical-tube boilers. Chem. Eng. Progr. Symp. Ser. 52 (1956) 69–77

    Google Scholar 

  28. Schrock, V. E.; Grossman, L. M.: Forced convection boiling studies. Univ. California, Inst. Eng. Res. Berkely. Final Rep. Ser. No. 73308-UCX 2182, TID-14632, 1959

    Google Scholar 

  29. Bennett, J. A. R.; Collier, J. G.; Pratt, H. R. C.; Thornton, J. D.: Heat transfer to two-phase gas-liquid systems. Part I: Steam-water mixtures in the liquid-dispersed region in an annulus. Trans. Inst. Chem. Eng. 39 (1961) 113–126

    Google Scholar 

  30. Wright, R. M.; Somerville, G. F.; Sani, R. L.; Bromley, L. A.: Downflow boiling of water and n-butanol in uniformly heated tubes. Chem. Eng. Progr. Symp. Ser. 61(1965) 220–229

    Google Scholar 

  31. Somerville, G. F.: Downflow boiling of n-butanol in a uniformly heated tube. Univ. California, Lawrence Radiation Lab. 10527, Oct. 1962

    Google Scholar 

  32. Collier, J. G.; Lacey, P. M. C.; Pulling, D. J.: Heat transfer to two-phase gas-liquid systems. Part II: Further data on steam-water mixtures in the liquid dispersed region in an annulus. Trans. Inst. Chem. Eng. 42 (1964) T127–139

    Google Scholar 

  33. Pujol, L.; Stenning, A. H.: Effect of flow direction on the boiling heat transfer coefficient in vertical tubes. Proc. Int. Symp. Cocurrent Gas-Liquid Flow. Univ. Waterloo, Canada, Sept. 1968, p. 401–453

    Google Scholar 

  34. Sani, R. L.: Downflow boiling and non-boiling heat transfer in a uniformly heated tube. Univ. California, Lawrence Radiation Lab. 9023, Jan. 1960

    Google Scholar 

  35. Chaddock, J. B.: Forced convection evaporation in tubes. Am. Soc. Heating Refrig. Air Cond. Eng. (ASHRAE). Handbook of Fundamentals. Chapt. 3, New York 1972

    Google Scholar 

  36. Borishanskij, B. M.; Andeevskij, A. A.; Fromzel, V. N.; Fokin, B. S.; Cistgakov, V. A.; Danilowa, G. N.; Bikov, G. S.: Wärmeübergang bei Zweiphasenströmungen (russ.). Teploenergetika 11(1971) 68–69

    Google Scholar 

  37. Shah, M. M.: A new correlation for heat transfer during boiling flow through pipes. Trans. Am. Soc. Heating Refrig. Air Cond. Eng. (ASHRAE) 82 (1976) 66–86

    Google Scholar 

  38. Shah, M. M.: Chart Correlation for saturated boiling heat transfer: Equations and further study. Trans. Am. Soc. Heating Refrig. Air Cond. Eng. (ASHRAE). Preprint no. 2673, 1982

    Google Scholar 

  39. Weatherhead, R. J.: Nucleate boiling characteristics and the critical heat flux occurence in subcooled axial flow water systems. ANL 6675, 1963

    Google Scholar 

  40. Silvestri, M.: Two-phase (steam and water) flow and heat transfer. Part II. IInd Int. Heat Transfer Conf., Boulder 1961

    Google Scholar 

  41. Lee, D. H.; Obertelli, J. D.: An experimental investigation of forced convection boiling in high pressure water. Part I. AEEW-Rep. 213, 1963

    Google Scholar 

  42. Lee, D. H.: An experimental investigation of forced convective boiling in high pressure water. Part III. AEEW-Rep. 355, 1965

    Google Scholar 

  43. Matzner, B.: Basic experimental studies of boiling fluid flow and heat transfer at elevated pressures. TID 18978, 1963

    Google Scholar 

  44. Doroshchuk, V. E.; Levitan, L. L.; Lantsmann, F. P.: Recommendations for calculating burnout in a round tube with uniform heat release (russ.). Teploenergetika 22 (1975) 66–70; s. auch: Academy of Science, USSR: Tabular data for calculating bournout when boiling water in uniformly heated round tubes. Therm. Eng. 23 (1977) 77–79

    Google Scholar 

  45. Macbeth, R. V.: Burn-out analysis. Part 4. Application of a local condition hypothesis to world data for uniformly heated round tubes and rectangular channels. AEEW-Rep. 267, 1963

    Google Scholar 

  46. Thomson, B.; Macbeth, R. V.: Boiling water heat transfer-burnout in uniformly heated round tubes: A compilation of world data with accurate correlations. AEEW-Rep. 356, 1964

    Google Scholar 

  47. Bowring, R. W.: A simple but accurate round tube uniform heat flux, dryout correlation over the pressure range 0,7–17 MN/m2 (100–2500 psia). AEEW-Rep. 789, 1972

    Google Scholar 

  48. Drescher, G.; Köhler, W.: Die Ermittlung kritischer Siedezustände im gesamten Dampfgehaltsbereich für innendurchströmte Rohre. Brennst. Wärme Kraft 33 (1981) 416–422

    Google Scholar 

  49. Kon’kov, H. S.: Experimental studies of the conditions under which heat exchange deteriorates when a steam-water mixture flows in heated tubes. Teploenergetika 12 (1965) 77

    Google Scholar 

  50. Alad’yev, I. G.; Goslov, L. D.; Dodonov, L. D.; Fedynskij, O. S.: Heat transfer to boiling potassium in uniformly heated tubes. Heat Transfer Soy. Res. 1 (1969) 14–26

    Google Scholar 

  51. Wallis, G. B.: One-dimensional two-phase flow. New York: McGraw-Hill 1969

    Google Scholar 

  52. Watson, G. B. R.; Lee, A.; Wiener, M.: Critical heat flux in inclined and vertical smooth and ribbed tubes. Vth Int. Heat Transfer Conf. Tokyo 1974, Vol. IV, p. 275–280

    Google Scholar 

  53. Drescher, G.; Hein, D.; Katsaounis, A.; Köhler, W.; Ulrych, G.: Kritische Siedezustände strömender Flüssigkeiten. In: VDI-Wärmeatlas. 4. Aufl. Düsseldorf: VDI-Verlag 1984, Arbeitsblätter Hbc

    Google Scholar 

  54. Lee, D. H.: Burnout in a channel with nonuniform circumferential heat flux. AEEW-Rep. 477, 1966

    Google Scholar 

  55. Alekseev, G. V.: Burnout heat fluxes under forced flow. IIIrd Int. Conf on peaceful uses of atomic energy, Geneva, A/Conf. P. 28/P/327 a, 1964

    Google Scholar 

  56. Collier, J. G.: Convective boiling and condensation. New York: McGraw-Hill 1972, p. 273

    Google Scholar 

  57. Köhler, W.: Einfluß des Benetzungszustandes der Heizfläche auf Wärmeübergang und Druckverlust in einem Verdampferrohr. Diss. TU München 1984

    Google Scholar 

  58. Iloeje, O. C.; Plummer, D. N.; Rohsenow, W. M.; Griffith, P.: A study of wall rewet and heat transfer in dispersed vertical flow. M I T Dept. Mech. Eng., Rep. 727 (1974) 18–92

    Google Scholar 

  59. Collier, J. G.: Post-dryout heat transfer-A review of current position. Proc. NatoAdvanced Study Inst. on Two-Phase Flow Heat Transfer. New York: Hemisphere 1976

    Google Scholar 

  60. Mayinger, F.; Langner, M.: Post-dryout heat transfer. Proc. VIth Int. Heat Transfer Conf., Toronto 1978, Vol. 6, p. 181–198

    Google Scholar 

  61. Bennett, A. W.; Hewitt, G. F.; et al.: Heat transfer to steam-water mixtures flowing in uniformly heated tubes in which the critical heat flux has been exceeded. AERE-Rep. 5373, 1967

    Google Scholar 

  62. Gnielinski, V.: Neue Gleichungen für den Wärme-und den Stoffübergang in turbulent durchströmten Rohren und Kanälen. Forsch. Ingenieurwes. 41(1975) 8–16

    Article  Google Scholar 

  63. Groeneveld, D. C.: An investigation of heat transfer in the liquid deficient regime. At. Energy Can. Ltd. AECL Rep. 3281, 1969

    Google Scholar 

  64. Müller, H.-J.: Beitrag zur Untersuchung des Wärmeübergangs an einer simulierten Sekundärkühlzone beim Stranggießverfahren. Diss. TU Clausthal 1972

    Google Scholar 

  65. Bolle, L.; Moureau, J. C.: Spray cooling of surfaces. In: Multiphase science and technology. Vol. 1. New York: McGraw-Hill 1982, p. 1–97

    Google Scholar 

  66. Wachters, L. H.; Westerling, N. A.: The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chem. Eng. Sci. 21(1966) 1047–1056

    Article  Google Scholar 

  67. Wachters, L. H.: De warmteoverdracht van een hete wand naar druppels in de sferoidale toestand. Thesis, TH Delft 1965

    Google Scholar 

  68. Moureau, J. C.: Le refroidissement des parois métalliques très chaudes par pulvérisation d’eau. Thèse. Univ. Catholique de Louvain 1978

    Google Scholar 

  69. Savic, P.: The cooling of a hot surface by drops boiling in contact with it. Nat. Res. Coun. Can. Rep. MT-37, 1958

    Google Scholar 

  70. Grigull, U.; Sandner, H.: Wärmeleitung. Berlin: Springer 1979, 5.66

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stephan, K. (1988). Wärmeübergang beim Sieden reiner Stoffe in erzwungener Strömung. In: Wärmeübergang beim Kondensieren und beim Sieden. Wärme- und Stoffübertragung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83159-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83159-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18075-3

  • Online ISBN: 978-3-642-83159-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics