Skip to main content

Part of the book series: Wärme- und Stoffübertragung ((WÄRME))

  • 546 Accesses

Zusammenfassung

Der Wärmeübergang bei Verdampfung wird leichter verständlich, wenn man weiß, wie Dampfblasen an Heizflächen entstehen. Wir wollen daher im folgenden zunächst die Bildung und das Anwachsen von Dampfblasen erörtern, ehe wir die verschiedenen Arten des Wärmeübergangs im einzelnen behandeln.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Mitrovié, J.; Stephan, K.: Gleichgewichtsradien von Dampfblasen und Flüssigkeitstropfen. Wärme Stoffübertrag. 13 (1980) 171–176

    Article  Google Scholar 

  2. Bashfort, Fr.; Adams, J.: An attempt to test the theory of capillary action. Cambridge: Cambridge University Press 1883

    Google Scholar 

  3. Fritz, W.: Berechnung des Maximalvolumens von Dampfblasen. Phys. Z. 36 (1935) 379–384

    Google Scholar 

  4. Fritz, W.; Ende, W.: Über den Verdampfungsvorgang nach kinematographischen Aufnahmen an Dampfblasen. Phys. Z. 37 (1936) 391–401

    Google Scholar 

  5. Kabanow, W.; Frumkin, A.: Nachtrag zu der Arbeit „Über die Größe elektrisch entwickelter Gasblasen“. Z. Phys. Chem. (A) 166 (1933) 316–317

    Google Scholar 

  6. Stephan, K.: Beitrag zur Thermodynamik des Wärmeübergangs beim Sieden. Abh. Dtsch. Kältetech. Ver. Nr. 18. Karlsruhe: Müller 1964

    Google Scholar 

  7. König, A.: Der Einfluß der thermischen Heizwandeigenschaften auf den Wärmeübergang bei der Blasenverdampfung. Wärme Stoffübertrag. 6 (1973) 38–44

    Article  Google Scholar 

  8. von Ceumern, W. C.: Abreißdurchmesser und Frequenzen von Dampfblasen in Wasser und wässrigen NaCl-Lösungen beim Sieden an einer horizontalen Heizfläche. Diss. TU Braunschweig 1975

    Google Scholar 

  9. Mitrovié, J.: Das Abreißen von Dampfblasen an festen Heizflächen. Int. J. Heat Mass Transfer 26 (1983) 955–963

    Article  Google Scholar 

  10. Stephan, K.: Bubble formation and heat transfer in natural convection boiling. In: Hahne, E.; Grigull, U.: Heat transfer in boiling. Washington: Hemisphere 1977, 3–20

    Google Scholar 

  11. Tokuda, N.: Dynamics of vapor bubbles in binary liquid mixtures with translatory motion. IVth Int. Heat Transfer Conf., Paris 1970, B 7. 5

    Google Scholar 

  12. Kutateladse, J. J.; Gogonin, I. I.: Wachstumsgeschwindigkeit und Abreißdurchmesser von Dampfblasen bei Verdampfung gesättigter Flüssigkeiten in freier Strömung. Teplofiz. Vys. Temp. 17 (1979) 792–797

    Google Scholar 

  13. Mamontova, N. N.: Diss. Novosibirsk 1967

    Google Scholar 

  14. Golovin, V. S.; Kolcugin, B. A.; Sacharova, E. A.: Berichte. ENIN 35 (1976) 30

    Google Scholar 

  15. Jagov, V. V.; Gorodov, A. K.; Labunzov, D. A.: Sammelband der Arbeiten 1968–1969. ENIN, 1969

    Google Scholar 

  16. Cole, R.: Bubble frequencies and departure volumes at subatmospheric pressures. Am. Inst. Chem. Eng. J. 13 (1967) 779–783

    Article  Google Scholar 

  17. Labunzov, D. A.; Kolcugin, B. A.; Golovin, V. S.; Sacharova, E. A.; Vladimirova, L. N.: Sammelband „Wärmeübergang in Apparaten der Energietechnik“ Moskau: Nauka 1966

    Google Scholar 

  18. Grigorjev, V. A.; Pavlov, Ju. M.; Ametistov, E. V.; Klimenkov, V. V.; Klimenkov, A. V.: Berichte MEI 198 (1974) 3

    Google Scholar 

  19. Nishikawa, K.; Fujita, Y.; Nawata, J.; Nishijama, T.: Heat Transfer Jpn. Res. 5 (1976) 66

    Google Scholar 

  20. Gorodov, A. K.; Kabankov, 0. N.; Labunzov, D. A.; Jagov, V. V.: Berichte MEI 198 (1974) 48

    Google Scholar 

  21. Zamilova, G. N.: Diss. LTIHP, Leningrad 1968

    Google Scholar 

  22. Nordmann, D.: Temperatur, Druck und Wärmetransport in der Umgebung kondensierender Blasen. Diss. TU Hannover 1980

    Google Scholar 

  23. Jakob, M.; Linke, W.: Der Wärmeübergang von einer waagerechten Platte an siedendes Wasser. Forsch. Ingenieurwes. 4 (1933) 75–81

    Article  Google Scholar 

  24. Zuber, N.: Nucleate boiling. The region of isolated bubbles and the similarity with natural convection. Int. J. Heat Mass Transfer 6 (1963) 53–78

    Article  Google Scholar 

  25. McFadden, P.; Grassmann, P.: The relation between bubble frequency and diameter during nucleate boiling. Int. J. Heat Mass Transfer 5 (1962) 169–173

    Article  Google Scholar 

  26. Ivey, H. J.: Relationships between bubble frequency, departure diameter and rise velocity in nucleate boiling. Int. J. Heat Mass Transfer 10 (1967) 1023–1040

    Article  Google Scholar 

  27. Malenkov, I. G.: The frequency of vapor-bubble separation as a function of bubble size. Fluid Mech. Soy. Res. 1 (1972) 36–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stephan, K. (1988). Physikalische Grundlagen der Dampfblasenbildung. In: Wärmeübergang beim Kondensieren und beim Sieden. Wärme- und Stoffübertragung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83159-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83159-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18075-3

  • Online ISBN: 978-3-642-83159-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics