Skip to main content

Quantum Transfer-Matrix Method and Its Application to Quantum Spin Systems

  • Conference paper
Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 74))

Abstract

It is well known that the transfer-matrix method is very useful in the statistical mechanics of classical systems [1,2]. For example, the partition function of the three-dimensional (3D) Ising model is formulated in terms of the transfer matrix. If the size of the lattice is N=l×m×n, the partition function can be written as

$$\text{Z=Tr }{{T}^{n}}$$
(1.1)

where the transfer matrix T acts on the spin states of the 2D layer of l×m sites sliced from the 3D lattice. The transfer matrix can be pictured as an operator which governs the evolution of spin states from layer to layer. Since each layer has 2lm spin states, the size of the matrix T is 2lm×2lm. In the limit n →∞ the partition function is dominated by the maximum eigenvalue Λ of T:

$$\text{Z}\sim {{\Lambda }^{n}}$$
(1.2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.A. Kranvers and G.H. Wannier: Phys. Rev. 60, 252 (1941)

    Article  MathSciNet  ADS  Google Scholar 

  2. G.F. Newell and E.W. Montroll: Rev. Mod. Phys. 25, 353 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. H. Betsuyaku: Phys. Rev. Lett. 53, 629 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  4. H. Betsuyaku: Prog. Theor. Phys. 73, 319 (1985)

    Article  ADS  Google Scholar 

  5. M. Suzuki: Phys. Rev. B 31, 2957 (1985)

    Article  ADS  Google Scholar 

  6. T. Yokota and H. Betsuyaku: Prog. Theor. Phys. 75, 46 (1986)

    Article  ADS  Google Scholar 

  7. H. Betsuyaku: Prog. Theor. Phys. 75, 774 (1986)

    Article  ADS  Google Scholar 

  8. H. Betsuyaku and T. Yokota: Prog. Theor. Phys. 75, 808 (1986)

    Article  ADS  Google Scholar 

  9. H. Betsuyaku and T. Yokota: Phys. Rev. B 33, 6505 (1986)

    Article  ADS  Google Scholar 

  10. M. Suzuki and H. Betsuyaku: Phys. Rev. B 34, 1829 (1986)

    Article  ADS  Google Scholar 

  11. H. Betsuyaku: Phys. Rev. B 34, 8125 (1986)

    Article  ADS  Google Scholar 

  12. T. Tsuzuki: Prog. Theor. Phys. 73, 1352 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. T. Tsuzuki: Prog. Theor. Phys. 75, 225 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  14. T. Sakaguchi, K. Kubo and S. Takada: J. Phys. Soc. Jpn 54, 861 (1985)

    Article  ADS  Google Scholar 

  15. K. Kubo and T. Takada: bid. 55, 438 (1986);

    Google Scholar 

  16. T. Takada and K. Kubo: ibid. 55, 1671 (1986)

    Google Scholar 

  17. M. Suzuki: Prog. Theor. Phys. 56, 1454 (1976)

    Article  ADS  MATH  Google Scholar 

  18. M. Suzuki: J. Stat. Phys. 43, 883 (1986), and references cited therein.

    Article  ADS  Google Scholar 

  19. M. Barma and B.S. Shastry: Phys. Rev. B 18, 3351 (1978)

    Article  ADS  Google Scholar 

  20. H. De Raedt and B. D. Raedt: Phys. Rev. A 28, 3575 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  21. H. De Raedt, A. Lagendijk, and J. Fivez: Z. Phys. B 46, 261 (1982)

    Article  ADS  Google Scholar 

  22. R.M. Fye: Phys. Rev. B 33, 6271 (1986)

    Article  ADS  Google Scholar 

  23. S. Katsura: Phys. Rev. 127, B1508 (1962)

    Article  ADS  Google Scholar 

  24. J.J. Cullen and D.P. Landau: Phys. Rev. B 27, 297 (1983)

    Article  ADS  Google Scholar 

  25. M. Suzuki: Phys. Lett. 113A, 299 (1985)

    Article  MathSciNet  Google Scholar 

  26. J.C. Bonner and M.E. Fisher: Phys. Rev. 135, A640 (1964)

    Article  ADS  Google Scholar 

  27. M. Suzuki: J. Stat. Phys. 42, 1047 (1986), and references cited therein.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Betsuyaku, H. (1987). Quantum Transfer-Matrix Method and Its Application to Quantum Spin Systems. In: Suzuki, M. (eds) Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium Systems. Springer Series in Solid-State Sciences, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83154-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83154-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83156-0

  • Online ISBN: 978-3-642-83154-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics