Monte Carlo Study of the Sherrington-Kirkpatrick Spin Glass Model in a Transverse Field

  • H. Ishii
  • T. Yamamoto
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 74)

Abstract

On the basis of the Sherrington-Kirkpatrick (hereafter referred to as SK) model [1] of an Ising spin glass with infinite-range interactions, many studies have been made theoretically and by means of computer simulations [2]. The physical picture of the spin glass which has emerged is that the phase space of the spin glass is divided into many valleys separated from one another by barriers, and one of the valleys is further subdivided into two or more valleys with decreasing temperatures. This hierarchical structure manifests a succession of micro phase transitions [3].

Keywords

Depression Nite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Sherrington, S. Kirkpatrick: Phys. Rev. Lett. 35, 1792 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    For reviews, see K. H. Fischer: Phys. Status Solidi B116, 357 (1983); 130, 13 (1985)CrossRefGoogle Scholar
  3. 3.
    M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, M. Virasoro: Phys. Rev. Lett. 52, 1156 (1984); J. Phys (Paris) 45, 843 (1984)ADSGoogle Scholar
  4. 4.
    A. J. Bray, M. A. Moore: J. Phys. C 13, L655 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    H. -J. Sommers: J. Magn. Magn. Mat. 22, 267 (1981)ADSCrossRefGoogle Scholar
  6. 6.
    R. J. Elliott, C. Wood: J. Phys. C 4, 2359 (1971)ADSCrossRefGoogle Scholar
  7. P. Pfeuty, R. J. Elliott: J. Phys. C 4, 2370 (1971)ADSCrossRefGoogle Scholar
  8. A. Yanase, Y. Takeshige, M. Suzuki: J. Phys. Soc. Japan 41, 1108 (1976)ADSCrossRefGoogle Scholar
  9. 7.
    A. T. Fiory: Phys. Rev. B4, 614 (1971)ADSCrossRefGoogle Scholar
  10. 8.
    H. Ishii, T. Yamamoto: J. Phys. C 18, 6225 (1985)ADSCrossRefGoogle Scholar
  11. 9.
    Ya. V. Fedorov, E. F. Shender: Pis’ma. Zh. Eksp. Teor. Fiz. 34, 526 (1986)Google Scholar
  12. 10.
    T. Yamamoto, H. Ishii: (unpublished)Google Scholar
  13. 11.
    For reviews, see K. Binder, D. Stauffer: In Applications of the Monte Carlo Method in Statistical Physics, Topics Current Phys., Vol 36, ed. by K. Binder (Springer, Berlin, Heidelberg 1984), p. 1, p. 241Google Scholar
  14. 12.
    S. Kirkpatrick, D. Sherrington: Phys. Rev. B 17, 4384 (1978)ADSCrossRefGoogle Scholar
  15. 13.
    N. D. Mackenzie, A. P. Young: J. Phys. C 16, 5321 (1983)ADSCrossRefGoogle Scholar
  16. 14.
    M. Suzuki: Prog. Theor. Phys. 56, 1454 (1976)ADSMATHCrossRefGoogle Scholar
  17. 15.
    M. Suzuki: Phys. Rev. B 31, 2957 (1985)ADSCrossRefGoogle Scholar
  18. 16.
    A. Wiesler: Phys. Lett. 89A, 359 (1982)CrossRefGoogle Scholar
  19. 17.
    See, e.g., H. E. Stanley: Phase Transitions and Critical Phenomena (Oxford Univ. Press, London, 1971 ), p. 91Google Scholar
  20. 18.
    A weak support to such a judgement may be given by the similarity of the shape of P(t) in Fig. 4a to the correspondent obtained below Tc in the ferromagnetic model dealt in Sec. 2.1. In the latter the reverse found for N=100 disappears for N=200, showing the finite-size effect.Google Scholar
  21. 19.
    J. J. Cullen, D. P. Landau: Phys. Rev. B 27, 297 (1983)ADSCrossRefGoogle Scholar
  22. 20.
    M. Suzuki: Prog. Theor. Phys. 58, 1151 (1977)ADSCrossRefGoogle Scholar
  23. 21.
    H. De Raedt: preprintGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • H. Ishii
    • 1
  • T. Yamamoto
    • 1
  1. 1.Department of PhysicsOsaka City UniversitySumiyoshiku, Osaka 558Japan

Personalised recommendations