Skip to main content

Decoupled Cell Monte Carlo Method for Quantum Spin Systems

  • Conference paper
Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 74))

  • 448 Accesses

Abstract

A decoupled cell method is proposed as a new method of Monte Carlo simulation for quantum spin systems. Thermodynamic quantities such as internal energy, in-plane and out-of-plane susceptibilities and spin pair correlation functions are calculated by this method in the 1D XY model. The results obtained agree well with the exact ones except for very low temperatures, indicating the validity of this method. Further application of this method strongly suggests (1) the existence of a phase transition in the quantum XY model on the square lattice similar to the Kosterlitz-Thouless transition in the classical XY model, and (2) the existence of a sublattice structure composed of three lattices which is short-ranged both spatially and temporally in the antiferromagnetic Heisenberg model on the triangular lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. C. Handscomb, Proc.Cambridge Philos. Soc., 58 (1962), 594

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. D. C. Handscomb, Proc.Cambridge Philos. Soc., 60 (1964), 115

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Suzuki, Prog. Theor. Phys. 56 (1976), 1454

    Article  ADS  MATH  Google Scholar 

  4. M. Suzuki, Phys. Rev. B31 (1985), 2957

    ADS  Google Scholar 

  5. M. Suzuki, J. Stat. Phys. 43 (1986), 883

    Article  ADS  Google Scholar 

  6. S. Chakravarty and D. B. Stein, Phys. Rev. Lett., 49 (1982), 582

    Article  ADS  Google Scholar 

  7. J. W. Lyklema, Phys. Rev. Lett., 49 (1982), 88

    Article  ADS  Google Scholar 

  8. J. W. Lyklema, Phys. Rev. B27 (1983), 3108

    Article  ADS  Google Scholar 

  9. D. H. Lee, J. D. Joannopoulos and J. W. Negele, Phys. Rev. B30 (1984), 1599

    ADS  Google Scholar 

  10. S. Kadowaki and A. Ueda, Prog. Theor. Phys. 75 (1986), 451

    Article  ADS  Google Scholar 

  11. M. Suzuki, S. Miyashita and A. Kuroda, Prog. Theor. Phys. 58 (1977), 1377

    Article  ADS  MATH  Google Scholar 

  12. J. J. Cullen and D. P. Landau, Phys. Rev. B27 (1983), 297

    Article  ADS  Google Scholar 

  13. H. Betsuyaku, Phys. Rev. Lett. 53 (1984), 629

    Article  MathSciNet  ADS  Google Scholar 

  14. H. Betsuyaku, Prog. Theor. Phys. 73 (1985), 319

    Article  ADS  Google Scholar 

  15. T. Yokota and H. Betsuyaku, Prog. Theor. Phys. 75 (1986), 46

    Article  ADS  Google Scholar 

  16. H. Takano, Prog. Theor. Phys. 73 (1985), 332

    Article  ADS  Google Scholar 

  17. T. Sakaguchi, K. Kubo and S. Takada, J. Phys. Soc. Jpn. 54 (1985), 861

    Article  ADS  Google Scholar 

  18. I. Satija, G. Wysin and A. R. Bishop, Phys. Rev. B31 (1985), 3205

    Article  ADS  Google Scholar 

  19. E. Loh, Jr., D. J. Scalapino and P. M. Grant, Phys. Rev. B31 (1985), 4712

    Article  ADS  Google Scholar 

  20. H. De Raedt, B. De Raedt and A. Lagendijk, Z. Phys. B57 (1984), 209

    Article  MathSciNet  Google Scholar 

  21. H. De Raedt and A. Lagendijk, Phys. Rep. 127 (1985), 233

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Takasu, S. Miyashita and S. Suzuki, Prog. Theor. Phys. 75 (1986), 1254

    Article  ADS  Google Scholar 

  23. S. Homma, H. Matsuda and N. Ogita, Prog. Theor. Phys. 72 (1984), 1245

    Article  ADS  Google Scholar 

  24. S. Homma, H. Matsuda and N. Ogita, Prog. Theor. Phys. 75 (1986), 1068

    Article  ADS  Google Scholar 

  25. S. Homma. K. Sano, H. Matsuda and N. Ogita, Prog. Theor. Phys. Suppl. 87

    Google Scholar 

  26. S. Katsura, Phys. Rev. 127 (1962), 1508

    Article  ADS  MATH  Google Scholar 

  27. B. M. McCoy, Phys. Rev. 173 (1968), 531

    Article  MathSciNet  ADS  Google Scholar 

  28. J. M. Kosterlitz and D. J. Thouless, J. Phys. C6 (1973), 1181

    ADS  Google Scholar 

  29. J. M. Kosterlitz, J. Phys. C7 (1974), 1046

    ADS  Google Scholar 

  30. S. Miyashita, H. Nishimori, A. Kuroda and S. Suzuki, Prog. Theor. Phys. 60 (1978), 1669

    Article  ADS  Google Scholar 

  31. J. Tobochinik and G. V. Chester, Phys. Rev. B20 (1979), 3761

    Article  ADS  Google Scholar 

  32. J. E. Van Himbergen and S. Chakravarty, Phys. Rev. B23 (1981), 359

    Article  Google Scholar 

  33. K. Y. Szeto and G. Dresselhaus, Phys. Rev. B32 (1984), 3142

    Google Scholar 

  34. J. F. Fernandez, M. F. Ferreira and J. Stankiewicz, Phys. Rev. B34 (1986), 292

    Article  ADS  Google Scholar 

  35. G. H. Wannier, Phys. Rev. 79 (1950), 357

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. S. Miyashita, J. Phys. Soc. Jpn. 53 (1984), 44

    Article  ADS  Google Scholar 

  37. H. Nishimori and S.’ J. Miyake, Prog. Theor. Phys. 73 (1983), 18

    Article  ADS  Google Scholar 

  38. S. J. Miyake, Prog. Theor. Phys. 74 (1984), 468

    Article  ADS  Google Scholar 

  39. T. Oguchi, H. Nishimori and Y. Taguchi, J. Phys. Soc. Jpn. 55 (1986), 323

    Article  ADS  Google Scholar 

  40. S. Miyashita and H. Shiba, J. Phys. Soc. Jpn. 53 (1984), 1145

    Article  ADS  Google Scholar 

  41. H. Kawamura and S. Miyashita, J. Phys. Soc. Jpn. 53 (1984), 9, 4138

    Article  ADS  Google Scholar 

  42. K. Hirakawa, H. Kadowaki and K. Ubukoshi, J. Phys. Soc. Jpn. 54 (1985), 3526

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Homma, S., Sano, K., Matsuda, H., Ogita, N. (1987). Decoupled Cell Monte Carlo Method for Quantum Spin Systems. In: Suzuki, M. (eds) Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium Systems. Springer Series in Solid-State Sciences, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83154-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83154-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83156-0

  • Online ISBN: 978-3-642-83154-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics