Meßtechnik in der Emissions-Computertomographie

  • K. Jordan
Part of the Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology book series (HDBRADIOL, volume 15 / 1 / B)

Zusammenfassung

Der Begriff Emissions-Tomographie bedarf einer Erläuterung, da nicht eindeutig festliegt, wo die flächige Szintigraphie aufhört und die Tomographie beginnt. Man könnte annehmen, daß mit Einführung des fokussierenden Vielloch-Kollimators beim szintigraphischen Scanner durch Newell et al. (1952) die Tomographie ihren Anfang genommen hat, denn in der Tat hat dieser Kollimator tomographische Eigenschaften. Er bildet eine bestimmte Objektschicht (Fokusebene) scharf ab, während die davor und dahinter liegenden Schichten mehr oder weniger unscharf abgebildet werden. Dieser Effekt war anfänglich bei den damals üblichen NaJ(Tl)-Szintillationskristallen mit 2 Zoll Durchmesser relativ gering, wurde dann aber bei den gebräuchlichen 5 Zoll Kristallen und besonders bei kürzeren Fokusabständen doch merklich. Trotzdem möchte ich diesen Scannern keine tomographischen Eigenschaften zuerkennen, denn diese Kollimatoren wurden entwickelt, um die Ausbeute gegenüber der einzelnen zylindrischen Bohrung ganz erheblich zu erhöhen und nicht, um damit Tomographie zu betreiben. Im Gegenteil, diese fokussierende Eigenschaft störte eher bei der flächigen Szintigraphie, da sie dazu zwang, den Kollimator-Objekt-Abstand möglichst exakt zu wählen. Auch wurde die räumliche Auflösung in den nicht fokussierten Schichten unnötigerweise schlecht.

Literatur

  1. Ahluwalia B, Brownell GL, Hales C, Kazemi H (1981) Regional lung function evaluation with Nitrogen-13. Eur J Nucl Med 6: 453–457PubMedCrossRefGoogle Scholar
  2. Alkhafaji SM (1981) Monte Carlo calculations of a bismuth germanate scintillation detector. Nucl Instr Meth 187: 547–551CrossRefGoogle Scholar
  3. Allemand R, Gresset C, Vacher J (1980) Potential advantages of a cesium fluoride scintillator for a time-of-flight positron camera. J Nucl Med 21: 153–155PubMedGoogle Scholar
  4. Alpert NM, Chesler DA, Correia JA, Ackerman RH, Chang JY, Finklestein S, Davis SM, Brownell GL, Taveras JM (1982) Estimation of the local statistical noise in emission computed tomography. IEEE Trans Med Imag MI-1: 142–146Google Scholar
  5. Anger HO, Rosenthal DJ (1959) Scintillation camera and positron camera — technical aspects. In: IAEA (ed) Medical radioisotope scanning. IAEA, Vienna, p 59Google Scholar
  6. Anger HO (1966) Tomographic Gamma-Ray scanner with simultaneous readout of several planes. UCRL-16899 Rep Lawrence Radiation LaboratoryGoogle Scholar
  7. Anger HO (1967) The scintillation camera for radioisotope localization. In: Hoffman G, Scheer KE (Hrsg) Radioisotope in der Lokalisationsdiagnostik ( 1966 ). Schattauer, Stuttgart, S 1Google Scholar
  8. Anger HO (1968) Tomographic gamma-ray scanner with simultaneous readout of several planes. In: Gottschalk A, Beck RN (eds) Fundamental problems in scanning. Thomas, Springfield, p 195Google Scholar
  9. Anger HO (1969) Multiplane tomographic Gamma-Ray scanner. In: IAEA (Cd) Medical radioisotope scintigraphy. IAEA, Vienna, p 203Google Scholar
  10. Anger HO (1973) Multiplane tomographic scanner. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Soc Nucl Med Inc, New York, p2Google Scholar
  11. Areeda J, Chapman D, Van Train K, Bietendorf J, Friedman J, Berman D, Waxman A, Garcia E (1983) Methods for characterizing and monitoring rotational Gamma camera system performance. In: Esser PD (ed) Emission computed tomography. Soc Nucl Med New York, p 81Google Scholar
  12. Aurich F, Stange R (1982) Streutomographie–Dosimetrie und Aufnahmetechnik mit diagnostischen Röntgenstrahlen. Fortschr Röntgenstr 136: 206–210CrossRefGoogle Scholar
  13. Axelsson B, Msaki P, Israelsson A (1984) Subtraction of compton-scattered photons in single-photon emission computerized tomography. J Nucl Med 25: 490–494PubMedGoogle Scholar
  14. Baron JC, Lebrun-Grandie P, Collard P, Crouzel C, Mestelan G, Bousser MG (1982) Noninvasive measurement of blood flow, oxygen consumption, and glucose utilization in the same brain regions in man by PET: Concise communication. J Nucl Med 23: 391–399PubMedGoogle Scholar
  15. Barrett HH (1972) Fresnel zone plate imaging in nuclear medicine. J Nucl Med 13: 382–385PubMedGoogle Scholar
  16. Barrett HH, Horrigan FA (1973) Fresnel zone plate imaging of gamma rays: Theory Appl Opt 12: 2686–2702Google Scholar
  17. Barrett HH, Meester GD de (1974) Quantum noise in fresnel zone plate imaging. Appl Optics 13: 1100–1109CrossRefGoogle Scholar
  18. Barrett HH, Swindell W (1977) Analog reconstruction methods for transaxial tomography. Proc of the IEEE 65: 89–107CrossRefGoogle Scholar
  19. Barrett HH, Wilson DT, Meester GD de (1972) The use of half-tone screens in fresnel-zone plate imaging of incoherent sources. Opt Corn 5: 398–401CrossRefGoogle Scholar
  20. Barrett HH, Stoner WW, Wilson DT, Meester GD de (1974) Coded apertures derived from the fresnel zone plate. Opt Eng 13: 539–549Google Scholar
  21. Barrett HH, Gordon SK, Hershel RS (1976) Statistical limitations in transaxial tomography. Comput Biol Med 6: 307–323PubMedCrossRefGoogle Scholar
  22. Bateman JE, Connolly JF, Stephenson R, Flesher AC (1980) The development of the rutherford laboratory MWPC positron camera. Nucl Instr Meth 176: 83–88CrossRefGoogle Scholar
  23. Bates RHT, Peters TM (1971) Towards improve-ments in tomography. NZJ Sci 14: 883–896Google Scholar
  24. Beck JW (1983) Analysis of a camera based SPECT system. Nucl Instr Meth 213: 415–436CrossRefGoogle Scholar
  25. Beck JW, Jaszczak RJ, Coleman RE, Starmer CF, Nolte LW (1982) Analysis of SPECT including scatter and attenuation using sophisticated Monte Carlo modeling methods. IEEE Trans Nucl Sci NS-29/1: 506–511CrossRefGoogle Scholar
  26. Beller GA, Alton WJ, Cochavi S, Hnatowich D, Brownell GL (1979) Assessment of regional myocardial perfusion by positron emission tomography after intracoronary administration of gallium-68 labeled albumin microspheres. J Comput Assist Tomogr 3: 447–452PubMedCrossRefGoogle Scholar
  27. Bellini S, Piacentini M, Cafforio C, Rocca F (1979) Compensation of tissue absorption in emission tomography. IEEE Trans Acoustics, Speech, Signal Process ASSP-27/3: 213–218CrossRefGoogle Scholar
  28. Berberich R, Schmidt EL, Brill G (1984a) Bildverbesserung durch gewichtete Subtraktion des Comptonanteils. In: Schmidt HAE, Adam WE (Hrsg) Nuklearmedizin 1983. Schattauer, Stuttgart, S 86–90Google Scholar
  29. Berberich R, Brill G, Schmidt EL (1984b) Verbesserung des Auflösungsvermögens der Gammakamera durch gewichtete Subtraktion der Streustrahlung. Nuc Compact 15: 246–251Google Scholar
  30. Bergström M, Bohm C, Ericson K, Eriksson L, Litton J (1980) Corrections for attenuation, scattered radiation, and random coincidences in a ring detector positron emission transaxial tomo-graph. IEEE Trans Nucl Sci NS-27/1: 549–554Google Scholar
  31. Bergström M, Litton J, Eriksson E, Blohm C, Blomqvist G (1982) Detamination of object contour from projections for attenuation correction in cranial positron emission tomography. J Corn-put Assist Tomogr 6: 365–372CrossRefGoogle Scholar
  32. Bernard AD, Bradstock PA, Milward RC (1978) Transverse-section (tomographic) medical Gamma-Ray imaging using the J&P multipoise tomoscanner. In: Schmidt HAE, Woldring M (Hrsg) Nuklearmedizin 1977. Schattauer, Stuttgart, S 27Google Scholar
  33. Biersack HJ, Früscher W, Klünenberg H, Reske SN, Rasche A, Reichmann K, Winkler C (1983 a) SPECT des Hirns mit J-123-Isoprophyl-Amphetamin bei Epilepsie. NUC Compact 14:62–72Google Scholar
  34. Biersack HJ, Reichmann K, Reske SN, Janson R, Knopp R, Winkler C (1983 b) Erste klinische Erfahrungen mit der parametrischen SPECT des Herzbinnenraumes. NUC Compact 14:36–39Google Scholar
  35. Blum AS (1983) Improving SPECT image quality by body contour following. In: Esser PD (ed) Emission computed tomography. Soc Nucl Med, New York, p 163Google Scholar
  36. Boetticher H von, Helmers H, Schreiber P, SchmitzFeuerhake I (1982) Advances in y–y-coincidence scintigraphy with the scintillation camera. Phys Med Biol 27: 1495–1506CrossRefGoogle Scholar
  37. Bohm C, Eriksson L, Bergström M, Litton J, Sund-man R, Singh M (1978) A computer assisted ring-detector positron camera system for reconstruction tomography of the brain. IEEE Trans Nucl Sci NS-25/1: 624–637Google Scholar
  38. Bonte FJ, Devous Sr. MD, Stokely EM, Homan RW (1983) Single-photon tomographic determination of regional cerebral blood flow in epilepsy. AJNR 4: 544–546PubMedGoogle Scholar
  39. Borrello JA, Clinthorne NH, Rogers WL, Thrall JH, Keyes JW Jr (1981) Oblique-angle tomography: A restructuring algorithm for transaxial tomographic data. J Nucl Med 22: 471–483PubMedGoogle Scholar
  40. Bowley AR, Taylor CG, Causer DA, Barber DC, Keyes WI, Undrill PE, Corfield JR, Mallard JR (1973) A radioisotope scanner for rectilinear, arc, transverse section and longitudinal section scanning: (ASS — the Aberdeen Section Scanner). Br J Radiol 46: 262–271PubMedCrossRefGoogle Scholar
  41. Bozzo SR, Robertson JS, Milazzo JP (1968) A data processing method for a multidetector positron scanner. In: Gottschalk A, Beck RN (eds) Fundamental problems in scanning. Thomas, Springfield, p 212Google Scholar
  42. Bracewell RN (1956) Strip integration in radio astronomy. Aust J Phys 9: 198–217CrossRefGoogle Scholar
  43. Bracewell RN (1978) The fourier transform and its applications. Mc Graw Hill, New YorkGoogle Scholar
  44. Bracewell RN (1979) Image reconstruction in radio astronomy. In: Herman GT (ed) Image reconstruction from projections. Springer, Berlin Heidelberg New York, p 81Google Scholar
  45. Bracewell RN, Riddle AC (1967) Inversion of Fan-Beam scans in radio astronomy. The Astrophysical J 150: 427–434CrossRefGoogle Scholar
  46. Bracewell RN, Wernecke Si (1975) Image reconstruction over a finite field of view. J Opt Soc Am 65: 1342–1346CrossRefGoogle Scholar
  47. Britton KE, Shapiro B, Elliott AT (1981) Clinical results of quantitative single photon emission tomography. In: IAEA (ed) Medical radionuclide imaging 1980. vol I. IAEA, Vienna, p 263Google Scholar
  48. Brookeman VA, Maisey MN (1982) Performance characteristics of seven-pinhole tomography. Br J Radiol 55: 229–235PubMedCrossRefGoogle Scholar
  49. Brooks RA, Di Chiro G (1975) Theory of image reconstruction in computed tomography. Radiology 117: 561–572PubMedGoogle Scholar
  50. Brooks RA, Di Chiro G (1976) Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol 21: 689–732PubMedCrossRefGoogle Scholar
  51. Brooks RA, Weiss GH, Talbert AJ (1978) A new approach to interpolation in CT. J Comput Assist Tomogr 2: 577–585PubMedCrossRefGoogle Scholar
  52. Brooks RA, Sank VJ, Talbert AJ, Di Chiro G (1979 a) Sampling requirements and detector motion for positron emission tomography. IEEE Trans Nucl Sci NS-26/2:2760–2763Google Scholar
  53. Brooks RA, Glover GH, Talbert Ai, Eisner RL, Di Bianca FA (1979 b) Aliasing: A source of streaks in computed tomograms. J Comput Assist Tomogr 3:511–518PubMedCrossRefGoogle Scholar
  54. Brooks RA, Sank VJ, Di Chiro G, Friauf WS, Leighton SB (1980) Design of a high resolution positron emission tomograph: The Neuro-PET. J Comput Assist Tomogr 4: 5–13PubMedCrossRefGoogle Scholar
  55. Brooks RA, Sank VJ, Friauf WS, Leighton SB, Cascio HE, Di Chiro G (1981) Design considerations for positron emission tomography. IEEE Trans Biomed Eng BME-28/2: 158–176Google Scholar
  56. Brooks RA, Sank VJ, Di Chiro G, Friauf WS, Leighton SB, Cascio HE (1982) The neuro-PET: A new high resolution 7-Slice positron emission tomograph. In: Raynaud C (ed) Nuclear medicine and biology I. Pergamon, Paris, p 550Google Scholar
  57. Brown ML, Keyes JW Jr, Leonard PF, Thrall JH, Kircos LT (1977) Facial bone scanning by emission tomography. J Nucl Med 18: 1184–1188PubMedGoogle Scholar
  58. Brownell GL, Burnham CA (1973) MGH positron camera. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Soc Nucl Med Inc, New York, p 154Google Scholar
  59. Brownell GL, Burnham CA, Wilensky S, Aronow S, Kazemi H, Strieder D (1969) New developments in positron scintigraphy and the application of cyclotron-produced positron emitters. In: IAEA (ed) Medical radioisotope scintigraphy. IAEA, Vienna, p 163Google Scholar
  60. Brownell GL, Burnham CA, Chesler DA, Correia JA, Correll JE, Hoop B Jr, Parker JA, Subramanyam R (1977) Transverse section imaging of radionuclide distributions in heart, lung, and brain. In: Ter-Pogossian MM, et al (eds) Reconstruction tomography in diagnostic radiology and nuclear medicine. Park, Baltimore, p 293Google Scholar
  61. Brownell GL, Correia JA, Zamenhof RG (1978) Positron instrumentation. In: Lawrence JH, Budinger TF (eds) Recent advantages in nuclear medicine, vol 5. Grune & Stratton, New York, pp 1–49Google Scholar
  62. Brownell G, Burnham C, Correia J, Chesler D, Akkerman R, Tavares J (1979) Transverse section imaging with the MGH positron camera. IEEE Trans Nucl Sci NS-26/2: 2698–2702Google Scholar
  63. Brownell GL, Kearfott KJ, Kairento AL, Elmaleh DR, Alpert NM, Correia JA, Wechsler L, Ackerman RH (1983) Quantitation of regional cerebral glucose metabolism. J Comput Assist Tomogr 7: 919–924PubMedCrossRefGoogle Scholar
  64. Brunol J, Fonroget J, Roucayrol JC, Beaucoudry N de (1978) A high resolution computed tomography for nuclear medicine using a multipinhole collimator. In: Schmidt HAE, Woldring M (Hrsg) Nuklearmedizin 1977. Schattauer, Stuttgart, S 64Google Scholar
  65. Budinger TF (1977) Instrumentation trends in nu- clear medicine. Semin Nucl Med 7: 285–297PubMedCrossRefGoogle Scholar
  66. Budinger TF (1980) Physical attributes of single-photon tomography. J Nucl Med 21: 579–592PubMedGoogle Scholar
  67. Budinger TF (1981) Revival of clinical nuclear medi- cine brain imaging. J Nucl Med 22: 1094–1097PubMedGoogle Scholar
  68. Budinger TF ( 1982 a) Single photon emission tomography. In: Raynaud C (ed) Nuclear medicine and biology II. Pergamon, Paris, p 1159Google Scholar
  69. Budinger TF (1982 b) Three-dimensional display techniques: Description and critique of methods. In: Raynaud C (ed) Nuclear medicine and biology II. Pergamon, Paris, p 2185Google Scholar
  70. Budinger TF (1983 a) Time-of-flight positron emission tomography: Status relative to conventional PET. J Nucl Med 24:73–78Google Scholar
  71. Budinger TF (1983b) Positron emission tomography. In: Moss AA (ed) NMR, interventional radiology, and diagnostic imaging modalities. UCLA, San Francisco, p 149Google Scholar
  72. Budinger TF, Gullberg GT (1974 a) Three-dimensional reconstruction in nuclear medicine emission imaging. IEEE Trans Nucl Sci Ns-21: June 2–20Google Scholar
  73. Budinger TF, Gullberg GT (1974 b) Three-dimensional reconstruction in nuclear medicine by iterative least-squares and fourier transform techniques. Lawrence Berkeley Lab Rep LBL-2146Google Scholar
  74. Budinger TF, Gullberg GT (1977) Transverse section reconstruction of y-Ray emitting radionuclides in patients. In: Ter-Pogossian MM, Phelps ME, Brownell GL, Cox JR, Davis DO, Evans RG (eds) Reconstruction tomography in diagnostic radiology and nuclear medicine. University Park Press, Baltimore, pp 315–342Google Scholar
  75. Budinger TF, Macdonald B (1975) Reconstruction of the fresnel-coded gamma camera images by digital computer. J Nucl Med 16: 309–313PubMedGoogle Scholar
  76. Budinger TF, Gullberg GT, Nohr ML, McRae J, Anger HO (1973) Quantitative sequential imaging of radionuclide distribution using the whole-body scanner and the gamma camera: Absolute accuracy and aspects of three-dimensional reconstruction. Lawrence Berkeley Lab Rep LBL-2161Google Scholar
  77. Budinger TF, Gullberg GT, Nohr ML, McRae J, Anger HO (1974) Quantitative sequential imaging of radionuclide distribution using the whole-body scanner and the gamma camera: Absolute accuracy and aspects of three-dimensional reconstruction. In: Pabst HW (Hrsg) Nuklearmedizin 1973. Schattauer, Stuttgart, S 2Google Scholar
  78. Budinger TF, Derenzo SE, Gullberg GT, Greenberg WL, Huesman RH (1977a) Emission computer assisted tomography with single-photon and positron annihilation photon emitters. J Comput Assist Tomogr 1: 131–145CrossRefGoogle Scholar
  79. Budinger TF, Cahoon JL, Derenzo SE, Gullberg GT, Moyer BR, Yano Y (1977b) Three dimensional imaging of the myocardium with radionuclides. Radiology 125: 433–439Google Scholar
  80. Budinger TF, Derenzo SE, Greenberg WL, Gullberg GT, Huesman RH (1978) Quantitative potentials of dynamic emission computed tomography. J Nucl Med 19: 309–315PubMedGoogle Scholar
  81. Budinger TF, Gullberg GT, Huesman RH (1979 a) Emission computed tomography. In: Herman GT (ed) Image reconstruction from projections. Springer, Berlin Heidelberg New York, p 147Google Scholar
  82. Budinger TF, Derenzo SE, Gullberg GT, Huesman RH (1979b) Trends and prospects for circular ring positron cameras. IEEE Trans Nucl Sci NS-26: 2742–2745Google Scholar
  83. Budinger TF, Derenzo SE, Huesman RH, Cahoon JL, Yano Y (1980) Dynamic emission transaxialGoogle Scholar
  84. tomography for positron emitters. In: Horst W, Wagner HN Jr, Buchanan J (eds) Frontiers in nuclear medicine. Springer, Berlin Heidelberg New York, p 52Google Scholar
  85. Budinger TF, Derenzo SE, Huesman RH, Cahoon JL (1982) Medical criteria for the design of a dynamic positron tomograph for heart studies. IEEE Trans Nucl Sci NS-29/1: 488–492Google Scholar
  86. Büll U, Kirsch CM, Roedler HD (1983a) Die SinglePhoton-Emissions-Computertomographie (SPECT). Prinzipien, Ergebnisse, Ausblick. Fortschr Röntgenstr 138: 391–402CrossRefGoogle Scholar
  87. Büll U, Moser EA, Kirsch CM, Schmiedek P (1983 b) Xe-133-DSPECT (Dynamische Single Photon Emission CT). Fortschr Rüntgenstr 139:351–358Google Scholar
  88. Burdine JA, Murphy PH, Puey EG de (1979) Radionuclide computed tomography of the body using routine radiopharmaceuticals. II. Clinical applications. J Nucl Med 20: 108–114PubMedGoogle Scholar
  89. Burnham CA, Brownell GL (1972) A multi-crystal positron camera. IEEE Trans Nucl Sci NS-19/ 3: 201–205CrossRefGoogle Scholar
  90. Burnham C, Bradshaw J, Kaufman D, Chesler D, Brownell GL (1981) One dimensional scintillation camera for positron ECT ring detectors. IEEE Trans Nucl Sci Ns-28/1: 109–113Google Scholar
  91. Burnham C, Bradshaw J, Kaufman D, Chesler D, Brownell G (1982) Application of a one-dimensional scintillation camera in a positron tomographic ring detector. IEEE Trans Nucl Nucl Sci NS-29: 461–464CrossRefGoogle Scholar
  92. Burnham C, Bradshaw J, Kaufman D, Chesler D, Brownell GL (1983) A positron tomograph employing a one dimension BGO scintillation camera. IEEE Trans Nucl Sci NS-30: 661–664CrossRefGoogle Scholar
  93. Burnham CA, Bradshaw J, Kaufman D, Chesler D, Brownell GL (1984) A stationary positron emission ring tomograph using BGO detector and analog readout. IEEE Trans Nucl Sci NS-31: 632–636CrossRefGoogle Scholar
  94. Carril JM, Mac Donald AF, Dendy PP, Keyes WI, Undrill PE, Mallard JR (1979) Cranial scintigraphy: Value of adding emission computed tomo-graphic sections to conventional pertechnetate images (512 cases). J Nucl Med 20: 1117–1123PubMedGoogle Scholar
  95. Carroll LR (1978) Design and performance characteristics of a production model positron imaging system. IEEE Trans Nucl Sci NS-25/1: 606–614Google Scholar
  96. Carroll LR, Kretz P, Orcutt G (1983) The orbiting rod source: Improving performance in PET transmission correction scans. In: Esser PD (ed) Emission computed tomography. Soc Nucl Med, New York, p 235Google Scholar
  97. Cassen B (1969) Image formation by electronic cross-time correlation of signals from angular ranges of unfocused collimating channels. In: IAEA (ed) Medical radioisotope scintigraphy. IAEA, Vienna, p 107Google Scholar
  98. Celsis P, Goldman T, Henriksen L, Lassen NA (1981) A method for calculating regional cerebral blood flow from emission computed tomography of inert gas concentrations. J Comput Assist Tomogr 5: 641–645PubMedCrossRefGoogle Scholar
  99. Chang LT (1978) A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci NS-25/1: 638–643Google Scholar
  100. Chang LT (1979) Attenuation correction and incomplete projection in single photon emission computed tomography. IEEE Trans Nucl Sci NS-26/ 2: 2780–2789CrossRefGoogle Scholar
  101. Chang LT, Mac Donald B, Perez-Mendez V (1976) Axial tomography and three dimensional image reconstruction. IEEE Trans Nucl Sci NS-23/ 1: 568–572CrossRefGoogle Scholar
  102. Chang W, Henkin RE (1980) Seven-pinhole multi-gated tomography and its application to blood-pool imaging: Technical parameters. J Nucl Med 21: 682–688PubMedGoogle Scholar
  103. Chang W, Lin SL, Henkin RE (1982) A new collimator for cardiac tomography: The quadrant slant-hole collimator. J Nucl Med 23: 830–835PubMedGoogle Scholar
  104. Chen CT, Metz CE (1984) Evaluation and comparison of image reconstruction algorithms for positron emission tomography with time-of-flight information (TOFPET). Proc of the IEEE, Int Symp on Medical Images and Icons, pp 388393Google Scholar
  105. Chesler DA (1971) Three-dimensional activity distribution from multiple positron scintigraphs. J Nucl Med 12: 347–348 (Abs)Google Scholar
  106. Chesler DA (1973) Positron tomography and three-dimensional reconstruction technique. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Soc Nucl Med Inc, New York, p 176Google Scholar
  107. Chesler DA (1982) Noise power spectrum in time-offlight tomography. In: IEEE (ed) 1982 workshop on time-of-flight tomography. IEEE Computer Soc, Los Angeles, p 113–116Google Scholar
  108. Chesler DA, Riederer SJ (1975) Ripple suppression during reconstruction in transverse tomography. Phys Med Biol 20: 632–636PubMedCrossRefGoogle Scholar
  109. Chesler DA, Riederer SJ, Pelc NJ (1977) Noise due to photon counting statistics in computed X-Ray tomography. J Comput Assist Tomogr 1: 64–77PubMedCrossRefGoogle Scholar
  110. Cho ZH, Farukhi MR (1977) Bismuth germanate as a potential scintillation detector in positron cameras. J Nucl Med 18: 840–844PubMedGoogle Scholar
  111. Cho ZH, Chan JK, Eriksson L, Singh M, Graham S, MacDonald NS, Yano Y (1975) Positron ranges obtained from biomedically important positron-emitting radionuclides. J Nucl Med 16: 11741176Google Scholar
  112. Cho ZH, Chan JK, Eriksson L (1976) Circular ring transverse axial positron camera for 3-dimensional reconstruction of radionuclides distribution. IEEE Trans Nucl Sci NS-23/1: 613–622Google Scholar
  113. Cho ZH, Cohen MB, Singh M, Eriksson L, Chan J, MacDonald N, Spolter L (1977a) Performance and evaluation of the circular ring transverse axial positron camera (CRTAPC). In: IAEA (ed )Google Scholar
  114. Medical radionuclide imaging, vol I. IAEA, Vienna, p 269Google Scholar
  115. Cho ZH, Cohen MB, Singh M, Eriksson L, Chan J, MacDonald N, Spolter L (1977b) Performance and evaluation of the circular ring transverse axial positron camera (CRTAPC). IEEE Trans Nucl Sci NS-24/1: 532–543Google Scholar
  116. Cho ZH, Nalcioglu O, Farukhi MR (1978) Analysis of a cylindrical hybrid positron camera with bismuth germanate (BGO) scintillation crystals. IEEE Trans Nucl Sci NS-25/2: 952–963CrossRefGoogle Scholar
  117. Cho ZH, Hong KS, Ra JB, Lee SY (1981) A new sampling scheme for the ring positron camera: Dichotomie ring sampling. IEEE Trans Nucl Sci NS-28/1: 94–98CrossRefGoogle Scholar
  118. Cho ZH, Yi W, Jung KJ, Lee BU, Min HB, Song HB (1982) Performance of single photon tomo-graphic system — Gammatom-1. IEEE Trans Nucl Sci NS-29: 484–487CrossRefGoogle Scholar
  119. Cho ZH, Hilal SK, Ra JB, Hong KS, Bigler RE, Yoshizumi T, Wolf AP, Fowler JS (1983 a) High-resolution circular ring positron tomograph with dichotomic sampling: dichotom-I. Phys Med Biol 28:1219–1234CrossRefGoogle Scholar
  120. Cho ZH, Ra JB, Hilal SK (1983 b) True three-dimensional reconstruction (TTR) ü Application of algorithm toward full utilization of oblique rays. IEEE Trans Med Imag MI-2:6–18CrossRefGoogle Scholar
  121. Cho ZH, Hilal SK, Ra JB, Hong KS, Lee HS (1983 c) Experimental results of the dichotomie sampling in circular ring positron emission tomography. IEEE Trans Nucl Sci NS-20/3:1892–1898Google Scholar
  122. Chu G, Tam KC (1977) Three-dimensional imaging in the positron camera using fourier techniques. Phys Med Biol 22: 245–265PubMedCrossRefGoogle Scholar
  123. Chu D, Tam KC, Perez-Mendez V, Lim CB, Lambert D, Kaplan SN (1976) High-efficiency collimator-converters for neutral particle imaging with MWPC. IEEE Trans Nucl Sci NS-23/1: 634–639Google Scholar
  124. Chu D, Tam K, Perez-Mendez V, Kaplan SN, Lim C, Hattner R, Kaufman L, Price D, Swan S (1977) High efficiency gamma converters and their application in an MWPC positron camera. In: IAEA (ed) Medical Radionuclide Imaging, vol I. IAEA, Vienna, p 171Google Scholar
  125. Chung V, Chak KC, Zacuto P, Hart HE (1980) Multiple photon coincidence tomography. Semin Nucl Med X: 345–354Google Scholar
  126. Coleman RE, Jaszczak RJ, Cobb FR (1982a) Coinparisonmof 180° and 360° data collection in Thallium-201 imaging using single-photon emission computerized tomography (SPECT): Concise communication. J Nucl Med 23: 655–660Google Scholar
  127. Coleman RE, Drayer BP, Jaszczak RJ (1982b) Studying regional brain function: A challenge for SPECT. J Nucl Med 23: 266–270Google Scholar
  128. Coleman RE, Greer KL, Drayer BP, Albright RE, Petry NA, Jaszczak RJ (1983) Collimation for I-123 imaging with SPECT. In: Esser PD (ed) Emission computed tomography: Current trends. Soc Nucl Med, New York, p 135Google Scholar
  129. Colsher JG (1980) Fully three-dimensional positron emission tomography. Phys Med Biol 25: 103–115PubMedCrossRefGoogle Scholar
  130. Colsher JG, Muehllehner G (1981) Effects of wobbling motion on image quality in positron tomography. IEEE Trans Nucl Sci NS-28/1: 90–93CrossRefGoogle Scholar
  131. Condon B, Mills J, Ardley R, Taylor D (1983) A physical comparison of two fixed-angle emission tomographic cardiac imaging systems. Phys Med Biol 28: 131–138PubMedCrossRefGoogle Scholar
  132. Cooke BE, Evans AC, Fanthome EO, Alarie R, Sendyk AM (1984) Performance figures and images from the Therascan 3128 positron emission torno-graph. IEEE Trans Nucl Sci NS-31: 640–644CrossRefGoogle Scholar
  133. Cormack AM (1963) Representation of a function by its line integrals, with some radiological applications. J Appl Physiol 34: 2722–2727CrossRefGoogle Scholar
  134. Cormack AM (1973) Reconstruction of densities from their projections, with application in radiological physics. Phys Med Biol 18: 195–207PubMedCrossRefGoogle Scholar
  135. Cormack AM (1980) Early two-dimensional reconstruction (CT-scanning) and recent topics stemming from it. Nobel lecture, December 8, 1979. J Comput Assist Tomogr 4: 658–664PubMedCrossRefGoogle Scholar
  136. Cowan RJ, Watson NE (1980) Special characteristics and potential of single photon emission computed tomography in the brain. Semin Nucl Med X: 335–344Google Scholar
  137. Crawford CR, Kak AC (1979) Aliasing artifacts in computerized tomography. Appl Opt 18: 3704–3711PubMedCrossRefGoogle Scholar
  138. Del Guerra A, Lim CB, Lum GK, Ortendahl D, Perez-Mendez V (1982a) Medical positron imaging with a dense drift space multi wire proportional chamber. IEEE Trans Med Imag MI-1/1: 4–11Google Scholar
  139. Del Guerra A, Bellazzini R, Tonelli G, Venturi R, Nelson WR (1982b) A detailed monte carlo study of multiple scattering contamination in compton tomography at 90°. IEEE Trans Med Imag MI-1: 147–152Google Scholar
  140. Derenzo SE (1979) Precision measurement of annihilation point spread distributions for medically important positron emitters. In: Hasiguti RR, Fujiwara K (eds) Proc 5th Int Conf on Positron Annihilation. The Japan Institute of Metals, p 819Google Scholar
  141. Derenzo SE, Zaklad H, Budinger TF (1975) Analytical study of a high-resolution positron ring detector system for transaxial reconstruction tomography. J Nucl Med 16: 1166–1173PubMedGoogle Scholar
  142. Derenzo SE, Budinger TF, Cahoon JL, Huesman RH, Jackson HG (1977) High resolution computed tomography of positron emitters. IEEE Trans Nucl Sci NS-24/1: 544–558Google Scholar
  143. Derenzo SE, Budinger TF, Cahoon JL, Greenberg WL, Huesman RH, Vuletich T (1979) The donner 280-crystal high resolution positron tomograph. IEEE Trans Nucl Sci NS-26/2: 2790–2793Google Scholar
  144. Derenzo SE, Budinger TF, Huesman RH, Cahoon JL, Vuletich T (1981) Imaging properties of a po-sitron tomograph with 280 BGO crystals. IEEE Trans Nucl Sci NS-28/1: 81–89Google Scholar
  145. Derenzo SE, Budinger TF, Huesman RH, Cahoon JL (1982) Dynamic positron emission tomography in man using small bismuth germanate crystals. In: Coleman PG, Sharma SC, Diana LM (eds) Positron annihilation. North-Holland, Amsterdam, p 935Google Scholar
  146. Derenzo SE, Budinger TF, Vuletich T (1983) High resolution positron emission tomography using small bismuth germanate crystals and individual photosensors. IEEE Trans Nucl Sci NS-30: 665–670Google Scholar
  147. Di Chiro G, Oldfield E, Bairamian D, Patronas NJ, Brooks RA, Mansi L, Smith BH, Kornblith PL, Margolin R (1983) Metabolic imaging of the brain stem and spinal cord: Studies with positron emission tomograph using F-18–2-Deoxyglucose in normal and pathological cases. J Comput Assist Tomogr 7: 937–945PubMedCrossRefGoogle Scholar
  148. Döring V, Hahn R, Sauer J (1983) Meßtechnische Probleme bei der J-123-Szintigraphie. Nuc Corn-pact 14: 362–370Google Scholar
  149. Doria D, Singh M (1982) Comparison of reconstruction algorithms for an electronically collimated gamma camera. IEEE Trans Nucl Sci NS-29/ 1: 447–451CrossRefGoogle Scholar
  150. Drayer B, Jaszczak R, Friedman A, Albright R, Kung H, Greer K, Lischko M, Petry N, Coleman E (1983) In vivo quantitation of regional cerebral blood flow in glioma and cerebral infarction: Validation of the HIPDm–SPECT method. AJNR 4: 572–576PubMedGoogle Scholar
  151. Egbert SD, May RS (1980) An integral-transport method for compton-scatter correction in emission computed tomography. IEEE Trans Nucl Sci NS-27/1: 543–548Google Scholar
  152. Eichling JO, Higgins CS, Ter-Pogossian MM (1977) Determination of radionuclide concentrations with positron CT scanning (PETT): Concise communication. J Nile! Med 18: 845–847Google Scholar
  153. Ell PJ, Todd-Pokropek A, Williams ES (1978) The future of non-invasive medical imaging. Fortschr Röntgenstr 128: 486–490CrossRefGoogle Scholar
  154. Ell PJ, Khan O (1981) Emission computerized tomography: clinical applications. Semin Nucl Med XI: 50–60Google Scholar
  155. Ell PJ, Williams ES, Deacon JM (1980) Clinical efficacy study of ECAT and TCAT brain scans in 118 patients. In: Höfer R, Bergmann H (Hrsg) Radioaktive Isotope in Klinik and Forschung 14. Egermann, Wien, S 245Google Scholar
  156. Ell PJ, Jarritt J, Cullum I (1982) Present trends of single photon radionuclide tomography. Fortschr Röntgenstr 136: 330–336CrossRefGoogle Scholar
  157. Endo M, Iinuma TA (1984) Software correction of scatter coincidence in positron CT. Eur J Nucl Med 9: 391–396PubMedCrossRefGoogle Scholar
  158. Ericson K, Bergstrom M, Eriksson L (1980) Positron emission tomography in the evaluation of subdu-rai hematomes. J Comput Assist Tomogr 4: 737–745PubMedCrossRefGoogle Scholar
  159. Eriksson L, Cho ZH (1976) Efficiency optimization analysis for dynamic function studies with 3-D transaxial positron cameras. Comput Biol Med 6: 361–372PubMedCrossRefGoogle Scholar
  160. Eriksson L, Bohm C, Bergström M, Ericson K, Greitz T, Litton J, Widen L (1980) One year experience with a high resolution ring detector positron camera system: Present status and future plans. IEEE Trans Nucl Sci NS-27/1: 435–444Google Scholar
  161. Eriksson L, Bohm C, Kesselberg M, Blomqvist G, Litton J, Widen L, Bergström M, Ericson K, Greitz T (1982) A four ring positron camera system for emission tomograph of the brain. IEEE Trans Nucl Sci NS-29/1: 539–543Google Scholar
  162. Feine U, Anger K, Müller-Schauenburg W, Milward RC (1977) Erste klinische Erfahrungen mit einem axialen Emissions-Computer-Tomographen. Fortschr Röntgenstr 127: 358–365CrossRefGoogle Scholar
  163. Firusian N, Schmidt CG (1979) Ergebnisse der Emissions-Computer-Tomographie der Leber bei 113 bioptisch untersuchten Patienten. Nucl Med XVIII: 65–72Google Scholar
  164. Flower MA, Parker RP (1980) Quantitative imaging using the cleon emission tomography system. Radiology 137: 535–539PubMedGoogle Scholar
  165. Floyd CE, Jaszczak RJ, Harris CC, Coleman RE (1984) Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo investigation. Phys Med Biol 29: 1217–1230PubMedCrossRefGoogle Scholar
  166. Frackowiak RSJ, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of RCBF and oxygen metabolism in man using 0–15 and positron emission tomography: Theory, procedure, and normal values. J Comput Assist Tomogr 4: 727–736PubMedCrossRefGoogle Scholar
  167. Freedman GS (1970) Tomography with a gamma camera. J Nucl Med 11: 602–604PubMedGoogle Scholar
  168. Freedman GS (1973) Digital gamma camera tornography-theory. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Soc Nucl Med Inc, New York, p 68Google Scholar
  169. Frieden BR (1975) Image enhancement and restoration. In: Huang TS (ed) Picture processing and digital filtering. Springer, Berlin Heidelberg New York, p 177Google Scholar
  170. Friedland RP, Budinger TF, Ganz E, Yano Y, Mathis CA, Koss B, Ober BA, Huesman RH, Derenzo SE (1983) Regional cerebral metabolic alterations in dementia of the Alzheimer type: Positron emission tomography with (F-18)fluorodeoxyglucose. J Comput Assist Tomogr 7: 590–598PubMedCrossRefGoogle Scholar
  171. Gariod R, Allemand R, Cormoreche E, Laval M, Moszynski M (1982) The „LETI“ positron tomo-graph architecture and time-of-flight improvements. In: IEEE (ed) 1982 workshop on time-offlight tomography. IEEE Computer Soc, Los Angeles, p 25Google Scholar
  172. Genna S, Pang SC, Smith A (1982) Digital scintigraphy: concepts and designs. IEEE Trans Nucl Sci NS-29: 558–562Google Scholar
  173. Gilbert P (1972) Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 36: 105–117PubMedCrossRefGoogle Scholar
  174. Gindi GR, Arendt J, Barrett HH, Chiu MY, Ervin A, Giles CL, Kujoory A, Miller EL, Simpson RG (1982) Imaging with rotating slit apertures and rotating collimators. Med Phys 9: 324–339PubMedCrossRefGoogle Scholar
  175. Goitein M (1972) Three-dimensional density reconstruction from a series of two-dimensional projections. Nucl Instr Meth 101: 509–518CrossRefGoogle Scholar
  176. Goldstein RA (1982) Myocardial metabolic imaging: a new diagnostic era — teaching editorial. J Nucl Med 23: 641–644PubMedGoogle Scholar
  177. Goodman MM, Elmaleh DR, Kearfott KJ, Ackerman RH, Hoop B, Brownell GL, Alpert NM, Strauss HW (1981) F-18-Labeled 3-Deoxy-3Fluoro-D-Glucose for the study of regional metabolism in the brain and heart. J Nucl Med 22: 138–144PubMedGoogle Scholar
  178. Gordon R (1974) A tutorial on ART. IEEE Trans Nucl Sci NS-21/3: 78–93Google Scholar
  179. Gordon R, Herman GT (1974) Three-dimensional reconstruction from projections: a review of algorithms. Int Rev Cytol 38: 111–151PubMedCrossRefGoogle Scholar
  180. Gordon R, Bender R, Herman GT (1970) Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-Ray photography. J Theor Biol 29: 471–481PubMedCrossRefGoogle Scholar
  181. Gore JC, Leeman S (1980) The reconstruction of objects from incomplete projections. Phys Med Biol 25: 129–136PubMedCrossRefGoogle Scholar
  182. Gottschalk S, Salem D (1982) Effect of an elliptical orbit on SPECT resolution and image uniformity. In: Raynaud C (ed) Nuclear medicine and biology I. Pergamon, Paris, p 1026Google Scholar
  183. Gottschalk SC, Salem D, Lim CB, Wake RH (1983) SPECT resolution and uniformity improvements by noncircular orbit. J Nucl Med 24: 822–828PubMedGoogle Scholar
  184. Gullberg GT (1979) The attenuated radon transform: theory and application in medicine and biology. Thesis, Univ of California, BerkeleyGoogle Scholar
  185. Gullberg GT, Budinger TF (1981) The use of filtering methods to compensate for constant attenuation in single photon emission computed tomography. IEEE Trans Biomed Eng BME-28/2: 142–157Google Scholar
  186. Gullberg GT, Malko JA, Eisner RL (1983) Boundary determination methods for attenuation correction in single photon emission computed tomography. In: Esser PD (ed) Emission computed tomography. Soc Nucl Med, New York, p 33Google Scholar
  187. Harding G (1982) On the sensitivity and application possibilities of a novai compton scatter Imaging System. IEEE Trans Nucl Sci NS-29: 1260–1265Google Scholar
  188. Harper PV (1968) The three-dimensional reconstruction of isotope distributions. In: Gottschalk A, Beck TN (eds) Fundamental problems in scanning Thomas, Springfield, p 191Google Scholar
  189. K. JORDAN: Meütechnik in der Emissions-ComputertomographieGoogle Scholar
  190. Harper PV, Beck RN, Charleston DE, Brunsden B, Lathrop KA (1965) The three dimensional mapping and display of radioisotope distributions. J Nucl Med 6: 332 (Abs)Google Scholar
  191. Harris FJ (1978) On the use of windows for harmonic analysis with the discrete fourier transform. Proc of the IEEE 66: 51CrossRefGoogle Scholar
  192. Hart HE, Rudin S (1977) Three-dimensional imaging of multimillimeter sized cold lesions by focusing collimator coincidence scanning (FCCS). IEEE Trans Biomed Eng BME-24: 169–177Google Scholar
  193. Hasegawa B, Kirch D, Stern D, Adams M, Sklar J, Johnson T, Steele P (1982) Single-photon emission tomography with a 12-Pinhole collimator. J Nucl Med 23: 606–612PubMedGoogle Scholar
  194. Hedde JP, Reischies FM, Felix R, Helmchen H, Kanowski S (1982) Untersuchungen der regionalen Hirndurchblutung mit dem dynamischen Emissions-Computertomographen nach Inhalation von Xenon-133. Nuc Compact 13: 309–312Google Scholar
  195. Hedde JP, Reischies FM, Fiegler W, Felix R, Helmchen H, Kanowski S (1984) Tomographische nicht-invasive Messung der regionalen Hirndurchblutung. Fortschr Röntgenstr 140: 128–135CrossRefGoogle Scholar
  196. Heffernan PB, Robb RA (1983) Image reconstruction from incomplete projection data: Iterative reconstruction-reprojection techniques. IEEE Trans Biomed Eng BME-30/12: 838–841Google Scholar
  197. Helmers H, Boetticher H von, Schmitz-Feuerhake I (1982) Depth–discrimination in direct 3D-scanning without image reconstruction using a coincidence technique. Eur J Nucl Med 7: 324–326PubMedCrossRefGoogle Scholar
  198. Henriksen L, Lassen NA, Paulson OB (1980) Dynamic single photon emission tomography of the brain by Xenon-133 inhalation. Preliminary clinical studies. In: Höfer R, Bergman (Hrsg) Radioaktive Isotope in Klinik und Forschung 14. Egermann, Wien, S 463Google Scholar
  199. Herman GT (1979 a) The mathematics of wobbling a ring of positron annihilation detectors. IEEE Trans Nucl Sci NS-26/2:2756–2759Google Scholar
  200. Herman GT (1979b) Data collection for cross-sectional image reconstruction by a moving ring of positron annihilation detectors. J Comput Assist Tomogr 3: 261–266CrossRefGoogle Scholar
  201. Herman GT, Lung HP (1980) Reconstruction from divergent beams: A comparison of algorithms with and without rebinning. Comput Biol Med 10: 131–139PubMedCrossRefGoogle Scholar
  202. Herman GT, Naparstek A (1977) Fast image reconstruction based on a Radon inversion formula appropriate for rapidly collected data. SIAM J Appl Math 33: 511–533CrossRefGoogle Scholar
  203. Herman GT, Rowland SW (1973) Three methods for reconstructing objects from X-Rays: A comparative study. Comp Graph Image Proc 2: 151–178CrossRefGoogle Scholar
  204. Herman GT, Lakshminarayanan AV, Naparstek A (1976) Convolution reconstruction techniques for divergent beams. Comput Biol Med 6: 259–271PubMedCrossRefGoogle Scholar
  205. Herman GT, Rowland SW, Yau M (1979) A comparative study of the use of linear and modified cubic spline interpolation for image reconstruction. IEEE Trans Nucl Sci NS-26/2: 2879–2893Google Scholar
  206. Herscovitch P, Markham J, Raichle ME (1983) Brain blood flow measured with intravenous H2O-15. I. theory and error analysis. J Nucl Med 24: 782–789PubMedGoogle Scholar
  207. Higa T, Tanada S, Taki W, Fukuyama H, Ishii Y, Fujita T, Yonekawa Y, Odori T, Mukai T, Handa H, Kameyama M, Morita R, Torizuka K (1983) Superimposition of Krypton-81m single photon emission CT and X-Ray CT images for cerebral blood flow evaluation. J Comput Assist Tomogr 7: 37–41PubMedCrossRefGoogle Scholar
  208. Hill TC, Costello P, Gramm HF, Lovett R, McNeil BJ, Treves S (1978) Early clinical experience with a radionuclide emission computed tomographic brain imaging system. Radiology 128: 803–806PubMedGoogle Scholar
  209. Hirose Y, Ikeda Y, Higashi Y, Koga K, Hattori H, Kanno I, Miura Y, Miura S, Uemura K (1982) A hybrid emission CT–HEADTOME II. IEEE Trans Nucl Sci NS-29/1: 520–523Google Scholar
  210. Hoffman EJ (1982) 180ü compared with 360ü sampling in SPECT. J Nucl Med 23:745–747Google Scholar
  211. Hoffman EJ, Phelps ME, Mullani NA, Higgins CS, Ter-Pogossian MM (1976) Design and performance characteristics of a whole-body positron transaxial tomograph. J Nucl Med 17: 493–502Google Scholar
  212. Hoffman EJ, Phelps ME, Weiss ES, Welch MJ, Coleman RE, Sobel BE, Ter-Pogossian MM (1977) Transaxial tomographic imaging of canine myocardium with C-11-Palmitic acid. J Nucl Med 18: 57–61PubMedGoogle Scholar
  213. Hoffman EJ, Huang SC, Phelps ME (1979a) Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 3: 299–308CrossRefGoogle Scholar
  214. Hoffman EJ, Phelps ME, Wisenberg G, Schelbert HR, Kuhl DE (1979 b) Electrocardiographic gating in positron emission computed tomography. J Comput Assist Tomogr 3:733–739Google Scholar
  215. Hoffman EJ, Phelps ME, Ricci AR, Huang SC, Kuhl DE (1979c) Optimization of system design parameters for emission computed tomography. IEEE/EMBS CH 1440–7 /79: 363–368Google Scholar
  216. Hoffman EJ, Phelps ME, Huang SC, Kuhl DE, Crabtree M, Burke M, Burgiss S, Keyser R, Highfill R, Williams C (1981 a) A new tomo-graph for quantitative positron emission computed tomography of the brain. IEEE Trans Nucl Sci NS-28/1:99–103Google Scholar
  217. Hoffman EJ, Huang SC, Phelps ME, Kuhl DE (1981 b) Quantitation in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr 5:391–400Google Scholar
  218. Hoffman EJ, Huang SC, Plummer D, Phelps ME (1982) Quantitation in positron emission computer tomography: 6. Effect of nonuniform resolution. J Comput Assist Tomogr 6: 987–999PubMedCrossRefGoogle Scholar
  219. Hoffman EJ, Phelps ME, Huang SC (1983 a) Performance Evaluation of a positron tomograph designed for brain imaging. J Nucl Med 24:245–257Google Scholar
  220. Hoffman EJ, Ricci AR, van der Stee L, Phelps ME (1983 b) ECAT III - Basic design considerations. IEEE Trans Nucl Sci NS-30:729–733Google Scholar
  221. Holman BL, Idoine JD, Sos TA, Tancrell R, Meester G de (1977) Tomographic scintigraphy of regional myocardial perfusion. J Nucl Med 18: 764–769PubMedGoogle Scholar
  222. Holman BL, Hill TC, Wynne J, Lovett RD, Zimmerman RE, Smith EM (1979) Single-photon trans-axial emission computed tomography of the heart in normal subjects and in patients with infarction. J Nucl Med 20: 736–740PubMedGoogle Scholar
  223. Houle S, Joy MLG (1977) Quantum utilization limits for collimators and coded apertures. IAEA-SM210/156. In: IAEA (ed) Medical radionuclide imaging, vol 1. IAEA, Vienna, pp 219–229Google Scholar
  224. Hounsfield GN (1972) A method of and apparatus for examination of a body by radiation such as X or gamma radiation. The Patent Office, London, Patent Specification 128–3915Google Scholar
  225. Hounsfield GN (1973) Computerized transverse axial scanning (tomography): part I. Description of system. Br J Radiol 46: 1016–1022PubMedCrossRefGoogle Scholar
  226. Huang SC, Hoffman EJ, Phelps ME, Kuhl DE (1979) Quantitation in positron emission computed tomography: 2. Effects of inaccurate attenuation correction. J Comput Assist Tomogr 3: 804–814PubMedGoogle Scholar
  227. Huang SC, Hoffman EJ, Phelps ME, Kuhl DE (1980) Quantitation in positron emission cornputed tomography: 3. Effect of sampling. J Comput Assist Tomogr 4: 819–826PubMedCrossRefGoogle Scholar
  228. Huang SC, Carson RE, Phelps ME, Hoffman EJ, Schelbert HR, Kuhl DE (1981) A boundary method for attenuation correction in positron computed tomography. J Nucl Med 22: 627–637PubMedGoogle Scholar
  229. Huang SC, Carson RE, Hoffman EJ, Kuhl DE, Phelps ME (1982 a) An investigation of a double-tracer technique for positron computerized tomography. J Nucl Med 23:816–822Google Scholar
  230. Huang SC, Frazee J, Carson RE, Mazziotta J, Phelps ME, Hoffman EJ, MacDonald N, Kuhl DE (1982b) An investigation of a tomographic technique for in vivo measurement of local cerebral blood flow and water partition coefficient. In: Raynaud C (ed) Nuclear medicine and biology H. Pergamon, Paris, p 1965Google Scholar
  231. Huesman RH (1977) The effects of a finite number of projections angles and finite lateral sampling of projections on the propagation of statistical errors in transverse section reconstruction. Phys Med Biol 22: 511–521PubMedCrossRefGoogle Scholar
  232. Huesman RH, Cahoon JL (1980) Data acquisition, reconstruction and display for the donner 280-Crystal positron tomograph. IEEE Trans Nucl Sci NS-27/1: 474–478Google Scholar
  233. Huesman RH, Gullberg GT, Greenberg WL, Budinger TF (1977) Donner algorithms for reconstruction tomography. Lawrence Berkeley Laboratory, University of California, PUB 214Google Scholar
  234. Huesman RH, Derenzo SE, Budinger TF (1982) A two position sampling scheme for positron emission tomography. In: Raynaud C (ed) Nuclear medicine and biology I. Pergamon, Paris, p 542Google Scholar
  235. Hundeshagen H (1979) Entwicklung der Gerätetechnik und ihre Reflexion auf die nuklearmedizinisehe Praxis. In: Schmidt HAE, Ortiz Berrocal J (Hrsg) Nuklearmedizin 1978. Schattauer, Stuttgart, S 2Google Scholar
  236. Inouye T (1979) Image reconstruction with limited angle projection data. IEEE Trans Nucl Sci NS-26/2: 2666–2669Google Scholar
  237. Isenberg JF, Simon W (1978) Radionuclide axial tomography by half-backprojection. Phys Med Biol 23: 154–158PubMedCrossRefGoogle Scholar
  238. Jahangir SM, Brill AB, Bizais YJC, Rowe RW (1983) Count-rate variations with orientation of camera detector. J Nucl Med 24: 356–359PubMedGoogle Scholar
  239. Jarritt PH, Cullum ID (1983) Quality control of single photon emission tomographic systems. In: Mould RF (ed) Quality control of nuclear medicine instrumentation. The Hospital Physicists, Ass, London, p 81Google Scholar
  240. Jarritt PH, Ell PJ, Myers MJ, Brown NJG, Deacon JM (1979) A new transverse-section brain imager for single-gamma emitters. J Nucl Med 20: 319–327PubMedGoogle Scholar
  241. Jarritt PH, Cullum ID, Ell PJ (1981) SPECT I - figures of merit for two multiple detector (single slice) and one area detector (multiple slice) single photon emission tomographic instruments. In: IAEA (ed) Medical radionuclide imaging 1980, vol I. IAEA, Vienna, p 243Google Scholar
  242. Jaszczak RJ (1982) Physical characteristics of SPECT systems, September, 1982. J Comput Assist Tomogr 6: 1205–1215PubMedCrossRefGoogle Scholar
  243. Jaszczak RJ, Coleman RE (1980) Selected processing techniques for scintillation camera based SPECT systems. In: Soc Nucl Med, NY (ed) Single photon emission computed tomography. Soc Nucl Med, New York, p 45Google Scholar
  244. Jaszczak RJ, Murphy PH, Huard D, Burdine JA (1977) Radionuclide emission computed tomography of the head with Tc-99m and a sczintillation camera. J Nucl Med 18: 373–380PubMedGoogle Scholar
  245. Jaszczak.RJ, Chang LT, Stein NA, Moore FE (1979 a) Whole-body single-photon emission computed tomography using dual, largefield-ofview scintillation cameras. Phys Med Biol 24:1123–1143Google Scholar
  246. Jaszczak RJ, Chang LT, Murphy PH (1979 b) Single Photon Emission Computed Tomography using Multi-Slice Fan Beam Collimators. IEEE Trans Nucl Sci NS-26/1:610–618Google Scholar
  247. Jaszczak RJ, Coleman RE, Lim CB (1980) Spect:Single photon emission computed tomography. IEEE Trans Nucl Sci NS-27/3: 1137–1153Google Scholar
  248. Jaszczak RJ, Coleman RE, Whitehead FR (1981) Physical factors affecting quantitative measurements using camera-based single photon emission computed tomography (SPECT). IEEE Trans Nucl Sci Ns-28: 69–80Google Scholar
  249. Jaszczak RJ, Greer K, Coleman RE (1982 a) Lesion detection with SPECT and conventional imaging in the presence of source motion. In: Raynaud C (ed) Nuclear medicine and biology I. Perga-mon, Paris, p 461Google Scholar
  250. Jaszczak RJ, Whitehead FR, Lim CB, Coleman RE (1982b) Lesion detection with single-photon emission computed tomography (SPECT) compared with conventional imaging. J Nucl Med 23: 97–102Google Scholar
  251. Jaszczak RJ, Greer K, Coleman RE (1983) SPECT system misalignment: Comparison of phantom and patient images. In: Esser PD (ed) Emission computed tomography. Soc Nucl Med, New York, p 57Google Scholar
  252. Jaszczak RJ, Greer KL, Carey CF, Harris CC, Coleman RE (1984) Improved SPECT quantification using compensation for scattered photons. J Nucl Med 25: 893–900PubMedGoogle Scholar
  253. Jeavons A (1979) The CERN proportional chamber positron camera. In: Hasiguti RR, Fujiwara K (eds) Proc 5th Int Conf on Positron Annihilation. The Japan Institute of Metals, p 355Google Scholar
  254. Jeavons AP, Charpak G, Stubbs RJ (1975) The high-density multiwire drift chamber. Nucl Instr Meth 124: 491–503CrossRefGoogle Scholar
  255. Jeavons A, Schorr B, Kull K, Townsend D, Frey P, Donath A (1981) A large-area stationary positron camera using wire chambers. In: IAEA (ed) Medical radionuclide imaging 1980, vol I. IAEA, Vienna, p 49Google Scholar
  256. Johnson TK, Kirch DL, Hasegawa BH, Thompson D, Steele PP (1983) Spatial/temporal/energy dependence of scintillation camera nonlinearities. In: Esser PD (ed) Emission computed tomography: Current trends. Soc Nucl Med, New York, p 71Google Scholar
  257. Jordan K (1980) Grundlagen der Strahlenmeßtechnik. In: Hundeshagen H (ed) Nuklearmedizin. Springer, Berlin Heidelberg New York (Handbuch der medizinischen Radiologie, Bd XV/1A, S 131 )Google Scholar
  258. Jordan K (1981) Die Verfahren der Emissions-Cornputertomographie und ihre Grenzen. In: Pöppl SJ, Pretschner DP (Hrsg) Systeme und Signalverarbeitung in der Nuklearmedizin. Springer, Berlin Heidelberg New York, S 222Google Scholar
  259. Jordan K, Geisler S (1973) Data display in scintigraphy by means of a high-speed electrostatic plotter and special computer averaging techniques. In: IAEA (ed) Medical radioisotope scintigraphy 1972. IAEA, Vienna, p 635Google Scholar
  260. Jordan K, Gettner U (1977) Rechnergesteuerte Über-wachung von 60 Szintillationsmeßsonden in einem Tomographiescanner. In: Schmidt HAE (Hrsg) Nuklearmedizin 1975. Schattauer, Stuttgart, S 300Google Scholar
  261. Jordan K, Gettner U (1981) Einsatz der Flugzeitmessung bei quantitativen dynamischen Untersuchungen mit Positronen-Strahlern. In: Schmidt HAE, Wolf F, Mahlstedt J (Hrsg) Nuklearmedizin 1980. Schattauer, Stuttgart, S 27Google Scholar
  262. Jordan K, Gettner U (1982) Dreidimensionale Ortung von Positronen-Strahlern mit Hilfe der Flugzeitmessung. In: Höfer R, Bergmann H (Hrsg) Radioaktive Isotope in Klinik und Forschung, Bd 15. Egermann, Vienna, S 219Google Scholar
  263. Jordan K, Friel HI, Gettner U, Kaempf E, Geisler S, Harsdorf J von, Nentwig C (1974) A new concept of an experimental tomographic scanner. In: WFNMB (ed) Proceedings of the First World Congress of Nuclear Medicine. WFNMB, Tokyo Kyoto, p 1274Google Scholar
  264. Jordan K, Gettner U, Judas R (1982) A real time functional positron camera using time-of-flight techniques. In: Bleifeld W, Harder D et al. (eds) Proceedings of the World Congress on Medical Physics and Biomedical Engineering 1982. MPBE, Hamburg, p 21. 07Google Scholar
  265. Jordan K, Judas R, Gettner U, Knoop BO, Newiger H (1984 a) SATOF I: Ein Positronen Ringtomograph der Signalverstärkung (SAT) und Flugzeitmesstechnik (TOF) vereint. In: Höfer R, Bergmann H (Hrsg) Radioaktive Isotope in Klinik und Forschung. 16. Band, Egermann, Wien, S 509Google Scholar
  266. Jordan K, Gettner U, Judas R, Knoop BO (1984 b) SATOF I: A new design concept for a whole body positron emission tomograph with small rectangular crystals, high packing fraction, and excellent TOF-resolution. In: Schmidt HAE, Vauramo E (Hrsg) Nuklearmedizin 1984. Schattauer, Stuttgart, S 3Google Scholar
  267. Judas R, Jordan K, Gettner U (1984) Bariumfluorid - Ein schneller anorganischer Szintillator im Vergleich mit CsF und NE 102 A. In: Schmidt HAE, Adam WE (Hrsg) Nuklearmedizin 1983. Schattauer, Stuttgart, S 24Google Scholar
  268. Kairento AL, Brownell GL, Schluederberg J, Elmaleh DR (1983) Regional blood-flow measurement in rabbit soft-tissue tumor with positron imaging using the CO2–15 steady-state and labeled microspheres. J Nucl Med 24: 1135–1142PubMedGoogle Scholar
  269. Kanno I, Uemura K, Miura S, Miura Y (1981) HEADTOME: A hybrid emission tomograph for single photon and positron emission imaging of the brain. J Comput Assist Tomogr 5: 216–226PubMedCrossRefGoogle Scholar
  270. Kaplan SN, Kaufman L, Perez-Mendez V, Valentine K (1973) Multiwire proportional chambers for biomedical applications. Nucl Instr Meth 106: 397–406CrossRefGoogle Scholar
  271. Kaufman L, Ewins J, Rowan W, Hosier K, Okerlund M, Ortendahl D (1980) Semiconductor gamma-Literatur 303 cameras in nuclear medicine. IEEE Trans Nucl Sci NS-27/3: 1073–1079Google Scholar
  272. Kay DB, Keyes JW (1975) First order correction for absorption and resolution compensation in radionuclide fourier tomography. J Nucl Med 16: 540–541Google Scholar
  273. Kay DB, Keyes JW, Simon W (1974) Radionuclide tomographie image reconstruction using fourier transform techniques. J Nucl Med 15: 981–986PubMedGoogle Scholar
  274. Kearfott KJ (1982a) Absorbed dose estimates for positron emission tomography (PET): CO-15, C110, and COO-15. J Nucl Med 23: 1031–1037Google Scholar
  275. Kearfott KJ (1982b) Radiation absorbed dose estimates for positron emission tomography (PET): K-38, Rb-81, Rb-82, and Cs-130. J Nucl Med 23: 1128–1132Google Scholar
  276. Kearfott KJ, Junck L, Rottenberg DA (1983) C-11 Dimethyloxazolidinedione (DMO): Biodistribution, radiation absorbed dose, and potential for PET measurement of regional brain pH: Concise communication. J Nucl Med 24: 805–811PubMedGoogle Scholar
  277. Kearfott KJ, Carroll LR (1984) Evaluation of the performance characteristics of the PC 4600 positron emission tomograph. J Comput Assist Tomogr 8: 502–513PubMedCrossRefGoogle Scholar
  278. Kessler RM, Ellis JR, Eden M (1984) Analysis of emission tomographic scan data: Limitations imposed by resolution and background. J Comput Assist Tomogr 8: 514–522PubMedCrossRefGoogle Scholar
  279. Keyes WI (1979) Current status of single photon emission computerized tomography. IEEE Trans Nucl Sci NS-26/2: 2752–2755Google Scholar
  280. Keyes WI, Chesser R, Undrill PE (1977) Transversection emission tomography. In: Hay G (ed) Medical images. Wiley, Chichester, p 51Google Scholar
  281. Keyes JW Jr (1982) Perspectives on tomography. J Nucl Med 23: 633–640PubMedGoogle Scholar
  282. Keyes JW Jr, Orleanda N, Heetderks WJ, Leonard PF, Rogers WL (1977) The humongotron — a scintillation-camera transaxial tomograph. J Nucl Med 18: 381–387PubMedGoogle Scholar
  283. Keyes JW Jr, Leonard PF, Svetkoff DJ, Brody SL, Rogers WL, Lucchesi BR (1978a) Myocardial imaging using emission computed tomography. Radiology 127: 809–812Google Scholar
  284. Keyes JW Jr, Leonard PF, Brody SL, Svetkoff DJ, Rogers WL, Lucchesi BR (1978b) Myocardial infarct quantification in the dog by single photon emission computed tomography. Circulation 58: 227–232Google Scholar
  285. Keyes JW Jr, Rogers WL, Clinthorne NH, Koral KF, Harkness BA (1982) An image quality maintenance program for rotating gamma camera SPECT. In: Höfer R, Bergmann H (Hrsg) Radioaktive Isotope in Klinik and Forschung, Bd 15. Egermann, Wien, S 529Google Scholar
  286. Kim KI, Tewarson RP, Bizais Y, Rowe RW (1984) Inversion for the attenuated radon transform with constant attenuation. IEEE Trans Nucl Sci NS-31/1: 538–542Google Scholar
  287. King PH, Hubner K, Gibbs W, Holloway E (1981) Noise identification and removal in positron imaging systems. IEEE Trans Nucl Sci NS-28/1: 148–151Google Scholar
  288. Kirch DL, Vogel RA, LeFree MT, Stern DM, Sklar J, Hasegawa BH, Steele PP (1980) An anger camera/computer system for myocardial perfusion tomography using a seven pinhole collimator. IEEE Trans Nucl Sci NS-27/1: 412–420Google Scholar
  289. Kirsch CM, Doliwa R, Büll U, Roedler D (1983) Detection of severe coronary heart disease with T1–201: Comparison of resting single photon emission tomography with invasive arteriography. J Nucl Med 24: 761–767PubMedGoogle Scholar
  290. Kloster G, Laufer P, Wutz W, Stöcklin G (1983) Br-75, 77- and I-123-Analogues of D-Glucose as potential tracers for glucose utilization in heart and brain. Eur J Nucl Med 8: 237–241PubMedCrossRefGoogle Scholar
  291. Klug A, Crowther RA (1972) Three-dimensional image reconstruction from the viewpoint of information theory. Nature 238: 435–440CrossRefGoogle Scholar
  292. Knoll GF, Williams JJ (1977) Application of a ring pseudorandom aperture for transverse section tomography. IEEE Trans Nucl Sci NS-24/ 1: 581–586CrossRefGoogle Scholar
  293. Knoop BO (1980) Positronenmessung: Prinzip und Vorteile gegenüber einfacher Gamma-Messung. Der Nuklearmediziner 3: 121–129Google Scholar
  294. Knoop BO (1982) Klinische Anwendung digitaler Bildrekonstruktionsverfahren zur Quantifizierung von Profilmessungen im Ganzkürperzühler und zur nichtinvasiven Nierendurchblutungsbestimmung. Diss Universitüt BremenGoogle Scholar
  295. Knoop BO, Jordan K, Schober O (1984 a) Überlegungen zur realistischen Definition der räumlichen Auflösung. In: Schütz J (Hrsg) Medizinische Physik 1983. Hüthig, Heidelberg, S 597Google Scholar
  296. Knoop BO, Jordan K, Judas R, Schober O (1984 b) Spatial resolution in imaging systems: Equivalent width a realistic measure to replace FWHM. J Nucl Med 25/5:22 (abs)Google Scholar
  297. Kobayashi M, Morimoto K, Yoshida H, Sugimoto S, Kobayashi S, Chiba M, Ishii M, Akiyama S, Ishibashi H (1983) Bismuth silicate as a scintillating material for electromagnetic shower detectors. Nucl Instr Meth 205: 133–136CrossRefGoogle Scholar
  298. Koral KF, Rogers WL (1979) Application of ART to timecoded emission tomography. Phys Med Biol 24: 879–894PubMedCrossRefGoogle Scholar
  299. Koral KF, Rogers WL, Knoll GF (1975) Digital tomographic imaging with time-modulated pseudorandom coded aperture and anger camera. J Nucl Med 16: 402–413PubMedGoogle Scholar
  300. Koral KF, Freitas JE, Rogers L, Keyes JW (1979) Thyroid scintigraphy with time coded aperture. J Nucl Med 20: 345–349PubMedGoogle Scholar
  301. Koral KF, Clinthorne NH, Rogers WL, Keyes JW (1982) Feasibility of sharpening limited-angle tomography by including an orthogonal set of projections. Nucl Instr Meth 193: 223–227CrossRefGoogle Scholar
  302. Kouris K, Garnett ES, Herman GT (1981) Sampling properties of stationary and half-rotation rings in positron emission tomography. J Comput Assist Tomogr 5: 744–754PubMedCrossRefGoogle Scholar
  303. Kouris K, Herman GT, Tuy HK, Nahmias C (1982 a) Coincidence time window, ring sampling and attenuation problems in positron emission tomography. Nucl Instr Meth 193:215–222Google Scholar
  304. Kouris K, Spyrou NM, Jackson DF (1982b) Imaging with ionizing radiations. In: Jackson DF, Mayneord WV (eds) Kouris K, Spyrou NM, Jackson DF 1. Surrey University PressGoogle Scholar
  305. Kouris K, Tuy H, Lent A, Herman GT, Lewitt RM (1982c) Reconstruction from sparsely sampled data by ART with interpolated rays. IEEE Trans Med Imag MI-1: 161–167Google Scholar
  306. Kuhl DE (1984) Imaging local brain function with emission computed tomography. Radiology 150: 625–631PubMedGoogle Scholar
  307. Kuhl DE, Edwards RQ (1962) Body-section radio- isotope scanning. J Nucl Med 3: 199 (Abs)Google Scholar
  308. Kuhl DE, Edwards RQ (1963) Image separation radioisotope scanning. Radiology 80: 653–662Google Scholar
  309. Kuhl DE, Edwards RQ (1964) Cylindrical and section radioisotope scanning of the liver and brain. Radiology 83: 926–936PubMedGoogle Scholar
  310. Kuhl DE, Edwards RQ (1968) Reorganizing data from transverse section scans of the brain using digital processing. Radiology 91: 975–983PubMedGoogle Scholar
  311. Kuhl DE, Edwards RQ (1969) Digital processing for modifying and rearranging rectilinear and section scan data under direct observation. In: IAEA (ed) Medical Radioisotope Scintigraphy. IAEA, Vienna, p 703Google Scholar
  312. Kuhl DE, Edwards RQ (1970) The Mark III Scanner: A compact device for multiple-view and section scanning of the brain. Radiology 96: 563–570PubMedGoogle Scholar
  313. Kuhl DE, Hale J (1965) Transmission scanning for improved orientation of the emission scan. J Nucl Med 6: 333 (Abs)Google Scholar
  314. Kuhl DE, Hale J, Eaton WL (1966) Transmission scanning: A useful adjunct to conventional emission scanning for accurately keying isotope deposition to radiographic anatomy. Radiology 87: 278–284PubMedGoogle Scholar
  315. Kuhl DE, Edwards RQ, Ricci AR, Reivich M (1973a) Quantitative section scanning. In: IAEA (ed) Medical radioisotope scintigraphy 1972, vol I. IAEA, Vienna, p 347Google Scholar
  316. Kuhl DE, Edwards RQ, Ricci AR, Reivich M (1973 b) Quantitative section scanning using orthogonal tangent correction. J Nucl Med 14:196–200Google Scholar
  317. Kuhl DE, Reivich M, Alavi A, Nyary I, Staum MM (1975) Local cerebral blood volume determined by three-dimensional reconstruction of radionuclide scan data. Circ Res 36: 610–619PubMedGoogle Scholar
  318. Kuhl DE, Edwards RQ, Ricci AR, Yacob RJ, Mich TJ, Alavi A (1976) The Mark IV system for ra-dionuclide computed tomography of the brain. Radiology 121: 405–413PubMedGoogle Scholar
  319. Kuhl DE, Hoffman EJ, Phelps ME, Ricci A, Reivich M (1977) Design and application of Mark IV scanning system for radionuclide computed tomography of the brain. In: IAEA (ed) Medical radionuclide imaging, vol I. IAEA, Vienna, p 309Google Scholar
  320. Kuhl DE, Phelps ME, Engel J Jr (1980) Emission-computed tomography of Fluoride-18-Fluorodeoxyglucose and Nitrogen-13-Ammonia in stroke and epilepsy. In: IAEA (ed) Medical radionuclide imaging 1980, vol II. IAEA, Vienna, p 333Google Scholar
  321. Kuhl DE, Barrio JR, Huang SC, Selin C, Ackerman RF, Lear JL, Wu JL, Lin TH, Phelps ME (1982) Quantifying local cerebral blood flow by N-Isoprophyl-p-(I-123)Iodoamphetamine (IMP) tomography. J Nucl Med 23: 196–203PubMedGoogle Scholar
  322. Kwoh YS, Reed IS, Truong TK (1977) Back projection speed improvement for 3-D reconstruction. IEEE Trans Nucl Sci NS-24/5: 1999–2005Google Scholar
  323. Lange K, Carson R (1984) EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 8: 306–316PubMedGoogle Scholar
  324. Larsson SA (1980) Gamma camera emission tomography. Acta Radiol [Suppl] (Stockh) 363Google Scholar
  325. Larsson SA, Israelsson A (1982) Considerations on system design. Implementation and computer processing in SPECT. IEEE Trans Nucl Sci NS-29/4: 1331–1342Google Scholar
  326. Lassen NA (1982) Imaging cerebral blood flow by Xe-133 inhalation and dynamic single photon tomography. In: Schmidt HAE, Rösler H (Hrsg) Nuklearmedizin 1981. Schattauer, Stuttgart, S XLVGoogle Scholar
  327. Lassen NA, Sveinsdottir E, Kanno I, Stokely EM, Rommer P (1978) A fast moving single photon emission tomograph for regional cerebral blood flow studies in man. J Comput Assist Tomogr 2: 661–662 (Abs)Google Scholar
  328. Lassen NA, Henriksen L, Paulson O (1981) Regional cerebral blood flow in stroke by Xe-133 inhalation and emission tomography. Stroke 12: 284–288PubMedCrossRefGoogle Scholar
  329. Lassen NA, Henriksen L, Holm S, Barry I, Paulson OB, Vorstrup S, Rapin J, le Poncin-Lafitte M, Moretti JL, Askienazy S, Raynaud C (1983) Cerebral blood-flow tomography: Xenon-133 compared with Isoprophyl-Amphetamine-lodine123. J Nucl Med 24: 17–21PubMedGoogle Scholar
  330. Lauritzen M, Henriksen L, Lassen NA (1981) Regional cerebral blood flow during rest and skilled hand movements by Xenon-133 inhalation and emission computerized tomography. J Cereb Blood Flow Metab 1: 385–389PubMedCrossRefGoogle Scholar
  331. Lauterbur PC (1973) Measurements of local nuclear magnetic resonance relaxation times. Bull Am Phys Soc Ser II/18: 86 (Abs)Google Scholar
  332. Laval M, Allemand R, Campagnolo R, Garderet P, Gariod R, Guinet P, Moszynski M, Tournier E, Vacher J (1982) Contribution of the time-offlight information to the positron tomographic imaging. In: Raynaud C (ed) Nuclear medicine and biology III. Pergamon, Paris, p 2315Google Scholar
  333. Laval M, Moszynski M, Allemand R, Cormoreche E, Guinet P, Odru R, Vacher J (1983) Barium fluoride — inorganic scintillator for subnanosecond timing Nucl Instr Meth 206: 169–176Google Scholar
  334. Ledley RS, di Chiro G, Luessenhop AJ, Twigg HL (1974) Computerized transaxial X-ray tomography of the human body. Science 186: 207–212PubMedCrossRefGoogle Scholar
  335. Le Free MT, Vogel RA, Kirch DL, Steele PP (1981) Seven-pinhole tomography — a technical description. J Nucl Med 22: 48–54Google Scholar
  336. Leichter I, Karellas A, Craven JD, Greenfield MA (1984) The effect of the momentum transfer on the sensitivity of a photon scattering method for the characterization of tissues. Med Phys 11: 31–36PubMedCrossRefGoogle Scholar
  337. Levy G (1974) Comment on fresnel zone plate imaging in nuclear medicine. J Nucl Med 15: 214–215PubMedGoogle Scholar
  338. Lewis SE, Stokely EM, Devous MD, Bonte FJ, Buja LM, Parkey RW, Willerson JT (1981) Quantitation of experimental canine infarct size with multipinhole and rotating-slanthole tomography. J Nucl Med 22: 1000–1005PubMedGoogle Scholar
  339. Lewis MH, Bonte FJ, Lewis SE, Stokely EM (1982) Work in progress: A comparison of data collection protocols for single photon emission tomography: 180° versus 360°. Radiology 145: 501–504PubMedGoogle Scholar
  340. Lim CB, Chang LT, Jaszczak RJ (1980) Performance analysis of three camera configurations for single photon emission computed tomography. IEEE Trans Nucl Sci NS-27/1: 559–568Google Scholar
  341. Lim CB, Cheng A, Boyd DP, Hattner RS (1978) A 3-D iterative reconstruction method for stationary planar positron cameras. IEEE Trans Nucl Sci NS-25/1: 196–201Google Scholar
  342. Lim CB, Han KS, Hawman EG, Jaszczak RL (1982) Image noise, resolution and lesion detectability in single photon emission CT. IEEE Trans Nucl Sci NS-29/1: 500–505Google Scholar
  343. Llacer J (1979) Theory of imaging with a very limited number of projections. IEEE Trans Nucl Sci NS-26/1: 596–602Google Scholar
  344. Llacer J (1982) Tomographic image reconstruction by eigenvector decomposition: Its limitations and areas of applicability. IEEE Trans Med Imag MI-1: 34–42Google Scholar
  345. Llacer J, Spieler H, Goulding FS (1982) Theoretical analysis of the use of germanium detectors for time-of-flight emission tomography. In: IEEE (ed) 1982 workshop on time-of-flight tomography. IEEE Computer Soc. Los Angeles, p 75Google Scholar
  346. Lonn AHR, Rowbotham GD, Holman LA (1983) Monitoring rotating gamma camera performance for emission tomography. In: Mould RF (ed) Quality control of nuclear medicine instrumentation. The Hospital Physicists’ Ass, London, p 92Google Scholar
  347. Lottes G (1982) Verfahren zur iterativen Rekonstruktion bei der longitudinalen üSingle-PhotonEmission-Computed-Tomography (SPECT)“ am Beispiel eines Multidetektor-Scanners. Diss Medizinische Hochschule HannoverGoogle Scholar
  348. Lottes G, Jordan K (1978 a) Anwendung von iterativen Korrekturverfahren bei der longitudinalen Tomographie. In: Oeff K, Schmidt HAE (Hrsg) Nuklearmedizin 1976, Bd II. Medico Informationsdienste, Berlin, S 460Google Scholar
  349. Lottes G, Jordan K (1978b) Der Einfluß des statistischen Rauschens auf die Bildrekonstruktion bei der longitudinalen Computer-Emissions-Tomographie. In: Schmidt HAE, Woldring M (Hrsg) Nuklearmedizin 1977. Schattauer, Stuttgart, S 53Google Scholar
  350. Lottes G, Jordan K (1978e) Demonstration von rekonstruierten Schichtbildern der longitudinalen Emissions-Tomographie. In: Schmidt HAE, Woldring M (Hrsg) Nuklearmedizin 1977. Schattauer, Stuttgart, S 69Google Scholar
  351. Lottes G, Jordan K (1979 a) Vergleich von verschiedenen Rekonstruktions-Algorithmen bei der longitudinalen Emissions-Tomographie. In: Schmidt HAE, Ortiz-Berrocal J (Hrsg) Nuklearmedizin 1978. Schattauer, Stuttgart, S 57Google Scholar
  352. Lottes G, Jordan K (1979b) Ergebnisse der longitudinalen Emissionstomographie. In: Schmidt HAE, Ortiz-Berrocal J (Hrsg) Nuklearmedizin 1978. Schattauer, Stuttgart, S 81Google Scholar
  353. Lottes G, Jordan K (1980) Möglichkeiten zur Absorptionskorrektur bei der longitudinalen Emissionstomographie. In: Schmidt HAE, Riccabona G (Hrsg) Nuklearmedizin 1979. Schattauer, Stuttgart, S 118Google Scholar
  354. Lottes G, Jordan K (1981) Demonstration von Randfehlereinflüssen bei der longitudinalen Emissionstomographie anhand von klinischen Aufnahmen. In: Schmidt HAE, Wolf F, Mahlstedt J (Hrsg) Nuklearmedizin 1980. Schattauer, Stuttgart, S 23Google Scholar
  355. Maclntyre WJ, Go RT, Houser TS, Sufka B, Napoli C, Cook SA (1982) Evaluation of 180-DEG and 360 DEG reconstruction of the heart by trans-axial tomography with thallium-201. In: Esser PD (ed) Digital imaging. Soc of nuclear medicine. Inc, New York, p 197Google Scholar
  356. Marr RB (1974) On the reconstruction of a function on a circular domain from a sampling of its line integrals. J Math Analysis and Applications 45: 357–374CrossRefGoogle Scholar
  357. Mathieu L, Budinger TF (1974) Pinhole digital tomography. In: WFNMB (ed) Proceedings of the first world congress of nuclear medicine. WFNMB, Tokyo Kyoto, p 1264Google Scholar
  358. Maublant J, Cassagnes J, Le Jeune JJ, Mestas D, Veyre A, Jallut H, Meyniel G (1982) A compari-son between conventional scintigraphy and emission tomography with thallium-201 in the detection of myocardial infarction: Concise communication. J Nucl Med 23: 204–208PubMedGoogle Scholar
  359. Mazziotta JC, Phelps ME, Plummer D, Kuhl DE (1981) Quantitation in positron emission computed tomography: 5. Physical-Anatomical Effects. J Comput Assist Tomogr 5: 734–743PubMedCrossRefGoogle Scholar
  360. McAffee JG, Mozley JM (1969) Longitudinal tomographic radioisotopic imaging with a scintillation camera: Theoretical considerations of a new method. J Nucl Med 10: 654–659Google Scholar
  361. McCready VR, Flower MA, Meller ST (1980) A clinical and physical evaluation of an emission tomo-graphic system. In: Höfer R, Bergmann H (Hrsg) Radioaktive Isotope in Klinik and Forschung 14. Egermann, Wien, S 251Google Scholar
  362. McIntyre JA (1980 a) A three-dimensional position-sensitive gamma ray detection system. Nucl Instr Meth 171:19–27Google Scholar
  363. McIntyre JA (1980b) Design features of a positron tomograph with 2.4 mm resolution. IEEE Trans Nucl Sci NS-27/4: 1305–1311Google Scholar
  364. McIntyre JA (1980e) Plastic scintillation detectors for high resolution emission computed tomography. J Comp Assist Tomogr 4: 351–360CrossRefGoogle Scholar
  365. McIntyre JA (1982) Plastic scintillators for time-offlight tomography. In: IEEE (ed) 1982 workshop on time-of-flight tomography. IEEE Computer Soc, Los Angeles, p 51Google Scholar
  366. McKee BTA (1982) Towards high-resolution positron emission tomography for small volumes. In: Coleman PG, Sharma SC, Diana LM (eds) Positron annihilation. North-Holland, Amsterdam, p 955Google Scholar
  367. Mersereau RM (1973) Recovering multidimensional signals from their projections. Comp Graph Image Proc 1: 179–195CrossRefGoogle Scholar
  368. Mersereau RM (1976) Direct fourier transform techniques in 3-D image reconstruction. Comput Biol Med 6: 247–258PubMedCrossRefGoogle Scholar
  369. Metz CE, Beck RN (1974) Quantitative effects of stationary linear image processing and noise and resolution of structure in radionuclide images. J Nucl Med 15: 164–169PubMedGoogle Scholar
  370. Meyer GJ, Schober O, Gielow P, Hundeshagen H (1982) Functional imaging of the pancreas by positron emission tomography: Routine production of C-11-L-Methionine, quality control, methodology. In: Raynaud C (ed) Nuclear medicine and biology II. Pergamon, Paris, p 1977Google Scholar
  371. Meyer GJ, Schober 0, Hundeshagen H (1983) Konstante Infusion von 0–15-markiertem Wasser and Inhalation von C-11-markiertem Kohlenmonoxid als methodische Grundlage zur regionalen Bestimmung des Lungenwassers mittels Positronen-Emissionstomographie. Nucl Med XXII: 121–127Google Scholar
  372. Mintun MA, Raichle ME, Martin WRW, Herscovitch P (1984) Brain oxygen utilization measured with 0–15 radiotracers and positron emission tomography. J Nucl Med 25: 177–187PubMedGoogle Scholar
  373. Miraldi F, Chiro G di (1970) Tomographic techniques in radioisotope imaging with a proposal of a new device: The tomoscanner. Radiology 94: 513–520PubMedGoogle Scholar
  374. Miraldi F, Chiro G di, Skoff G (1969) Evaluation of current methods of radioisotope tomography and design of a new device: The tomoscanner. J Nucl Med 10: 358 (Abs)Google Scholar
  375. Mirell SG, Hecht HS, Hopkins JM, Bland WH (1981) Biplanar cardiac blood-pool tomography. J Nucl Med 22: 913–920PubMedGoogle Scholar
  376. Monahan WG, Beattie JW, Laughlin JS (1970) Operation and use of a scintillation camera system with three-dimensional resolution for positron emitters. J Nucl Med 11: 347 (Abs)Google Scholar
  377. Monahan WG, Beattie JW, Powell MD, Laughlin JS (1973) Total organ kinetic imaging monitor. In: IAEA (ed) Medical radioisotope scintigraphy 1972, vol I. IAEA, Vienna, p 285Google Scholar
  378. Moore SC (1982) Attenuation compensation. In: Ell PJ, Holman BL (eds) Computed emission tomography. Oxford University Press, Oxford, p 339Google Scholar
  379. Moore SC, Brunelle JA, Kirsch CM (1982) Quantitative multi-detector emission computerized tomography using iterative attenuation compensation. J Nucl Med 23: 706–714PubMedGoogle Scholar
  380. Moore RH, Alpert NM, Strauss HW (1983) A variable angle slant-hole collimator. J Nucl Med 24: 61–65PubMedGoogle Scholar
  381. Moszynski M, Gresset C, Vacher J, Odru R (1981) Timing properties of BGO scintillator. Nucl Instr Meth 188: 403–409CrossRefGoogle Scholar
  382. Moszynski M, Allemand R, Laval M, Odru R, Vacher J (1983) Recent progress in fast timing with CsF scintillators in application to time-of-flight positron tomography in medicine. Nucl Instr Meth 205: 239–249CrossRefGoogle Scholar
  383. Muehllehner G (1970) Rotating collimator tomography. J Nucl Med 11: 347 (Abs)Google Scholar
  384. Muehllehner G (1971) A tomographic scintillation camera. Phys Med Biol 16: 87–96PubMedCrossRefGoogle Scholar
  385. Muehllehner G (1973) Performance parameters for a tomographic scintillation camera. In: Freedman GS (ed) Tomographie imaging in nuclear medicine. Soc Nucl Med Inc, New York, p 76Google Scholar
  386. Muehllehner G (1975) Positron camera with extended counting rate cabability. J Nucl Med 16: 653–657PubMedGoogle Scholar
  387. Muehllehner G (1976) Resolution limit of positron cameras. J Nucl Med 17: 757PubMedGoogle Scholar
  388. Muehllehner G, Colsher JG (1980) Use of positron sensitive detectors in positron imaging. IEEE Trans Nucl Sci NS-27/1: 569–571Google Scholar
  389. Muehllehner G, Colsher J (1981) Single photon imaging. New instrumentation and techniques. In: IAEA (ed) Medical radionuclide imaging 1980, vol I. IAEA, Vienna, p 173Google Scholar
  390. Muehllehner G, Colsher JG (1982) Positron computed tomography: 1. Instrumentation. In: Ell PJ, Holman BL (eds) Computed emission tomography. Oxford Univ Press, Oxford, p 3Google Scholar
  391. Muehllehner G, Hashmi Z (1972) Quantification of the depth effect of tomographic and section imaging devices. Phys Med Biol 17: 251–260PubMedCrossRefGoogle Scholar
  392. Muehllehner G, Wetzel RA (1971) Section imaging by computer calculation. J Nucl Med 12: 76–84PubMedGoogle Scholar
  393. Muehllehner G, Buchin MP, Dudek JH (1976) Performance parameters of a positron imaging camera. IEEE Trans Nucl Sci NS-23/1: 528–537Google Scholar
  394. Muehllehner G, Atkins F, Harper PV (1977) Positron camera with longitudinal and transverse torno-graphic capabilities. In: IAEA (ed) Medical radionuclide imaging, vol I. IAEA, Vienna, p 291Google Scholar
  395. Mullani NA, Higgins CS, Hood JT, Currie CM (1978) PETT IV: Design analysis and performance characteristics. IEEE Trans Nucl Sci NS-25/1: 180–183Google Scholar
  396. Mullani NA, Ficke DC, Ter-Pogossian MM (1980a) Cesium fluoride: a new detector for positron emission tomography. IEEE Trans Nucl Sci NS-27/1: 572–575Google Scholar
  397. Mullani NA, Markham J, Ter-Pogossian MM (1980 b) Feasibility of time-of-flight reconstruction in positron emission tomography. J Nucl Med 21:1095–1097Google Scholar
  398. Mullani NA, Gould KL, Gaeta JM (1981) Tomographic imaging of the heart with thallium-201: Seven-pinhole or rotating gamma camera? J Nucl Med 22: 925–926PubMedGoogle Scholar
  399. Mullani NA, Wong WH, Hartz RK, Yerian K, Philippe EA, Gould KL (1982) Design of TOFPET: A high resolution time-of-flight positron camera. In: IEEE (ed) 1982 Workshop on time-of-flight tomography. IEEE Computer Soc, Los Angeles, p 31Google Scholar
  400. Mullani NA, Wong WH, Hartz R, Yerian K, Philippe EA, Gaeta JM, Gould KL (1983) Preliminary results with TOFPET. IEEE Trans Nucl Sci NS-30: 739–743Google Scholar
  401. Murayama H, Nohara N, Tanaka E, Hayashi T (1982) A quad BGO detector and its timing and positioning discrimination for positron computed tomography. Nucl Inst Meth 192: 501–511CrossRefGoogle Scholar
  402. Murphy PH, Thompson WL, Moore ML, Burdine JA (1979) Radionuclide computed tomography of the body using routine radiopharmaceuticals. I. System characterization. J Nucl Med 20: 102–107PubMedGoogle Scholar
  403. Myers MJ, Buseman Sokole E, Bakker J de (1983) A comparison of rotating slant hole collimator and rotating camera for single photon emission tomography of the heart. Phys Med Biol 28: 581–588PubMedCrossRefGoogle Scholar
  404. Myers WG, Bigler RE, Benua RS, Graham MC, Laughlin JS (1983) PET tomographic imaging of the human heart, pancreas and liver with nitrogen-13 derived from (N-13)-L-Glutamate Eur J Nucl Med 8: 381–384Google Scholar
  405. Nahmias C, Kenyon DB, Garnett ES (1982) Experience with a high efficiency positron emission tomograph. IEEE Trans Nucl Sci NS-29/1: 548–550Google Scholar
  406. Nahmias C, Firnau G, Garnett ES (1984) Performance characteristics of the McMaster positron emission tomograph. IEEE Trans Nucl Sci NS-31: 637–639Google Scholar
  407. Nalcioglu O, Cho ZH, Lou RY (1979) Limited field of view reconstruction in computerized tomography. IEEE Trans Nucl Sci NS-26/1: 546–551Google Scholar
  408. Nassi M, Brody WR, Medoff BP, Macovski A (1982) Iterative reconstruction-reprojection: An algorithm for limited data cardiac-computed tomography. IEEE Trans Biomed Eng BME-29: 333–340Google Scholar
  409. Nestor OH, Huang CY (1975) Bismuth germanate: A High-Z gamma-ray and charged particle detector. IEEE Trans Nucl Sci NS-22/1: 68–71Google Scholar
  410. Newell RR, Saunders W, Miller ER (1952) Multichannel collimators for gamma-ray scanning with scintillation counters. Nucleonics 10: 36Google Scholar
  411. Nichols AB, Cochavi S, Hales CA, Beller GA, Strauss HW (1979) Resolution rates of pulmonary embolism assessed by serial positron imaging with inhaled 0–15-labeled carbon dioxide. J Nucl Med 20: 281–286PubMedGoogle Scholar
  412. Nickles RJ, Meyer HO (1978) Design of a three-dimensional positron camera for nuclear medicine. Phys Med Biol 23: 686–695PubMedCrossRefGoogle Scholar
  413. Nohara N, Tanaka E, Tomitani T, Yamamoto M, Murayama H, Suda Y, Endo M, Iinuma T. Tateno Y, Shishido F, Ishimatsu K, Ueda K, Ta-kami K (1980) Positologica: A positron ECT device with a continuously rotating detector ring. IEEE Trans Nucl Sci NS-27/3: 1128–1132Google Scholar
  414. Ogawa K, Nakajima M, Yuta S (1984) A reconstruction algorithm for truncated projections. IEEE Trans Med Imag MI-3/1: 34–40Google Scholar
  415. O’Leary DH, Hill TC, Lee RGL, Clouse ME, Holman BL (1983) The use of I-123-Iodoamphetamine and single-photon emission computed tomography to assess local cerebral blood flow. AJNR 4: 547–549PubMedGoogle Scholar
  416. Oppenheim BE (1974) More accurate algorithms for iterative 3-dimensional reconstruction. IEEE Trans Nucl Sci NS-21/3: 72–77Google Scholar
  417. Oppenheim BE (1975) Three-dimensional reconstruction from incomplete projections. In: Raynaud C, Todd-Pokropek A (eds) Information processing in scintigraphy. Proceedings of the IVth international Conference, Orsay 1975, p 288–324Google Scholar
  418. Oppenheim BE (1980) Algebraic reconstruction technique (ART) for transaxial emission computed tomography. In: Soc Nucl Med (ed) Single photon emission computed tomography. Proc 10th Symp Soc Nucl Med Computer Council, Soc Nucl Med Inc, NY, p 31–44Google Scholar
  419. Oppenheim BE (1984) Scatter correction for SPECT. J Nucl Med 25: 928–929Google Scholar
  420. Ore A, Powell JL (1949) Three-photon annihilation of an electron-positron pair. Phys Rev 75: 1696–1699CrossRefGoogle Scholar
  421. Osamu I (1983) A new metabolically trapped agent by brain monoamine oxidase: N-methyl labeled (C-14) N-methylphenylethylamine (C-14MPEA). Eur J Nucl Med 8: 385–388PubMedCrossRefGoogle Scholar
  422. Ott RJ, Bateman JE, Flesher AC, Flower MA, Leach MO, Webb S, Khan O, McCready VR (1983a) Preliminary clinical images from a prototype positron camera. Br J Radiol 56: 773–776CrossRefGoogle Scholar
  423. Ott RJ, Flower MA, Khan O, Kalirei T, Webb S, Leach MO, McCready VR (1983b) A comparison between 180° and 360° data reconstruction in single photon emission computed tomography of the liver and spleen. Br J Radiol 56: 931–937CrossRefGoogle Scholar
  424. Pang SC, Genna S (1979) The effect of compton scattered photons on emission computerized trans-axial tomography. IEEE Trans Nucl Sci NS-26/ 2: 2772–2774CrossRefGoogle Scholar
  425. Patton J, Brill AB, Erickson J, Cook WE, Jonston RE (1969) A new approach to mapping three-dimensional radionuclide destributions. J Nucl Med Med 10: 363 (Abs)Google Scholar
  426. Patton JA, Brill AB, King PH (1973) Transverse section brain scanning with a multicrystal cylindrical imaging device. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Soc Nucl Med Inc, New York, p 28Google Scholar
  427. Patton JA, Price RR, Brill AB, Pehl R (1977) A mosaic intrinsic germanium radioisotope scanning device with longitudinal section scanning capability. In: IAEA (ed) Medical radionuclide imaging, vol I. IAEA, Vienna, p 159Google Scholar
  428. Patton JA, Price RR, Rollo FD, Brill AB, Pehl RH (1978) Clinical and experimental results with a 9 element high purity germanium array. IEEE Trans Nucl Sci NS-25/1: 653–656Google Scholar
  429. Patton JA, Price RR, Pickens DR, Brill AB (1980) Techniques for X-Ray fluorescence tomography. IEEE Trans Nucl Sci NS-27: 421–424Google Scholar
  430. Pelc NJ, Chesler DA (1979) Utilization of cross-plane rays for three-dimensional reconstruction by filtered back-projection. J Comput Assist Tomogr 3: 385–395PubMedCrossRefGoogle Scholar
  431. Peres A (1979) Tomographic reconstruction from limited angular data. J Comput Assist Tomogr 3: 800–803PubMedGoogle Scholar
  432. Perez-Mendez V, Schwartz G, Nelson WR, Bellazini R, Del Guerra A, Massai MM, Spandre G (1983) Further improvements in the design of a positron camera with dense drift space MWPCs. Nucl Instr Meth 217: 89–91CrossRefGoogle Scholar
  433. Phelps ME (1977 a) What is the purpose of emission computed tomography in nuclear medicine? J Nucl Med 18:399–402Google Scholar
  434. Phelps ME (1977 b) Emission computed tomography. Semin Nucl Med 7:337–365Google Scholar
  435. Phelps ME (1981) Positron computed tomography studies of cerebral glucose metabolism in man: Theory and application in nuclear medicine. Se-min Nucl Med XI: 32–49Google Scholar
  436. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM (1975a) Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16: 210–224Google Scholar
  437. Phelps ME, Hoffman EJ, Huang SC, Ter-Pogossian MM (1975b) Effect of positron range on spatial resolution. J Nucl Med 16: 649–652Google Scholar
  438. Phelps ME, Hoffman EJ, Coleman RE, Welch MJ, Raichle ME, Weiss ES, Sobel BE, Ter-Pogossian MM (1976) Tomographic Images of blood pool and perfusion in brain and heart. J Nucl Med 17: 603–612PubMedGoogle Scholar
  439. Phelps ME, Hoffman EJ, Kuhl DE (1977) Physiologic tomography (PT). A new approach to in-vivo measure of metabolism and physiological function. In: IAEA (ed) Medical radionuclide imaging, vol I. IAEA, Vienna, p 233Google Scholar
  440. Phelps ME, Hoffman EJ, Huang SC, Kuhl DE (1978) ECAT: A new computerized tomographic imaging system for positron emitting radiopharmaceuticals. J Nucl Med 19: 635–647PubMedGoogle Scholar
  441. Phelps ME, Huang SC, Hoffman EJ, Kuhl DE (1979) Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobin. J Nucl Med 20: 328–334PubMedGoogle Scholar
  442. Phelps ME, Hoffman EJ, Huang SC, Kuhl DE (1981) Positron computed tomography. In: IAEA (ed) Medical radionuclide imaging 1980, vol 1. IAEA, Vienna, p 199Google Scholar
  443. Phelps ME, Huang SC, Hoffman EJ, Plummer D, Carson R (1982) An analysis of signal amplification using small detectors in positron emission tomography. J Comput Assist Tomogr 6: 551–565PubMedCrossRefGoogle Scholar
  444. Pickens DR, Price RR, Patton JA, Erickson JJ, Rollo FD, Brill AB (1980) Focal-plane tomography image reconstruction. IEEE Trans Nucl Sci NS-27/1: 489–492Google Scholar
  445. Pickens DR, Price RR, Ericson JJ, Patton JA, Par-tain CL, Rolle FD (1981) Longitudinal and transverse digital image reconstruction with a tomographic scanner. In: IAEA (ed) Medical radionuclide imaging 1980, vol I. IAEA, Vienna, p 325Google Scholar
  446. Politte DG, Snyder DL (1982) A simulation study of design choices in the implementation of timeof-flight reconstruction algorithms. In: IEEE (ed) 1982 workshop on time-of-flight tomography. IEEE Computer Soc, Los Angeles, pp 131–136Google Scholar
  447. Politte DG, Snyder DL (1984) Results of a comparative study of a reconstruction procedure for producing improved estimates of radioactivity distributions in time-of-flight emission tomography. IEEE Trans Nucl Sci NS-31/1: 614–619Google Scholar
  448. Price LR (1975) CCA: A high resolution, high sensitivity, three-dimensional imaging system for nuclear medicine. Nucl Instr Meth 131: 353–368CrossRefGoogle Scholar
  449. Price LR (1978) CCA-II: An improved system for emission computed tomography (ECT). Nucl Instr Meth 152: 213–220CrossRefGoogle Scholar
  450. Price LR (1979) An improved coded-aperture system for emission computed tomography (ECT). IEEE Trans Nucl Sci NS-26/2: 2794–2796Google Scholar
  451. Ra JB, Cho ZH (1981) Generalized true three-dimensional reconstruction algorithm. Proc IEEE 69: 668–670CrossRefGoogle Scholar
  452. Ra JB, Lim CB, Cho ZH, Hilal SK, Correll J (1982) A true three-dimensional reconstruction algorithm for the spherical positron emission tomo-graph. Phys Med Bio! 27: 37–50CrossRefGoogle Scholar
  453. Radon J (1917) Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber Verh Sächs Akad Wiss Leipzig, Math Phys KI 69: 262–277Google Scholar
  454. Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J (1983) Brain blood flow measured with intravenous H2O -15. II. Implementation and validation. J Nucl Med 24: 790–798PubMedGoogle Scholar
  455. Ramachandran GN, Lakshminarayanan AV (1971) Three-dimensional reconstruction from radiographs and electron micrographs: Application of convolution instead of fourier transforms. Proc Natl Acad Sci USA 68 /9: 2236–2240PubMedCrossRefGoogle Scholar
  456. Rangayyan RM, Gordon R (1982) Streak preventive image reconstruction with ART and adaptive filtering. IEEE Trans Med Imag MI-1/3: 173–177Google Scholar
  457. Rankowitz S, Robertson JS, Hihinbotham WA, Rosenblum MJ (1962) Positron scanner for locating brain tumors. IRE Int Con Rec 10 /9: 49–56Google Scholar
  458. Ratib O, Henze E, Hoffman E, Phelps ME, Schelbert HR (1982) Performance of the rotating slant-hole collimator for the detection of myocardial perfusion abnormalities. J Nucl Med 23: 31–41Google Scholar
  459. Renaud L, Joy MLG, Gilday GL (1979) Fourier multiaperture emission tomography (FMET). J Nucl Med 20: 986–991PubMedGoogle Scholar
  460. Rhodes CG, Wollmer P, Fazio F, Jones T (1981) Quantitative measurement of extravascular lung density using positron emission and transmission tomography. J Comput Assist Tomogr 5: 783–791PubMedCrossRefGoogle Scholar
  461. Ricci AR, Hoffman EJ, Phelps ME, Huang SC, Plummer D, Carson R (1982) Investigation of a technique for providing a pseudo-continuous detector ring for positron tomography. IEEE Trans Nucl Sci NS-29/1: 452–456Google Scholar
  462. Rizi HR, Kline RC, Thrall JH, Besozzi MC, Keyes JW Jr, Rogers WL, Clare J, Pitt B (1981) Thallium-201 myocardial scintigraphy: A critical comparison of seven-pinhole tomography and conventional planar imaging. J Nucl Med 22: 493–499PubMedGoogle Scholar
  463. Robertson JS, Marr RB, Rosenblum M, Radeka V, Yamamoto YL (1973) 32-Crystal positron transverse section detector. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Soc Nucl Med Inc, New York, p 142Google Scholar
  464. Rogers WL, Han KS, Jones LW, Beierwaltes WH (1972) Application of a fresnel zone plate to gamma-ray-imaging. J Nucl Med 13: 612–615PubMedGoogle Scholar
  465. Rogers WL, Clinthorne NH, Harkness BA, Koral KF, Keyes JW Jr (1982 a) Field-flood requirements for emission computed tomography with an anger camera. J Nucl Med 23:162–168Google Scholar
  466. Rogers WL, Koral KF, Mayans R, Leonard PF, Thrall JH, Brady TJ, Keyes JW Jr (1980) Coded-aperture imaging of the heart. J Nucl Med 21: 371–378PubMedGoogle Scholar
  467. Rogers WL, Clinthorne NH, Stamos J, Koral KF, Mayans R, Keyes JW Jr, Williams JJ, Snapp WP, Knoll GF (1982b) SPRINT: A stationary detector single photon ring tomograph for brain imaging. IEEE Trans Med Imag MI-1: 63–68Google Scholar
  468. Rollo FD, Patton JA (1980) Teaching editorial: Perspectives on seven pinhole tomography. J Nucl Med 21: 888–890PubMedGoogle Scholar
  469. Rosenfeld D, Macovski A (1977) Time modulated apertures for tomography in nuclear medicine. IEEE Trans Nucl Sci NS-24/1: 570–576Google Scholar
  470. Rosier DJ de, Klug A (1968) Reconstruction of three-dimensional structures from electron micrographs. Nature 217: 130–134CrossRefGoogle Scholar
  471. Rowland SW (1979) Computer implementation of image reconstruction formulas. In: Herman GT (ed) Image reconstruction from projections. Springer, Berlin Heidelberg New York, p 9Google Scholar
  472. Rusinek H, Youdin M, Reich T (1978) Reconstruction of isotope distribution in the brain: Error analysis for instrument design. Ann Biomed Eng 6: 399–412PubMedCrossRefGoogle Scholar
  473. Rusinek H, Reich T, Youdin M, Clagnaz M, Kolwicz R (1980) A ultrapure germanium detector array for quantitating three-dimensional distribution of a radionuclide: A study of phantoms. J Nucl Med 21: 777–782PubMedGoogle Scholar
  474. Sank VJ, Brooks RA, Friauf WS, Leighton SB, Cascio HE, Di Chiro G (1983) Performance evaluation and calibration of the neuro-PET scanner. IEEE Trans Nucl Sci NS-30: 636–639Google Scholar
  475. Schelbert HR, Phelps ME, Hoffman EJ, Huang SC (1980 a) Regional myocardial perfusion assessed by nitrogen-13 labeled ammonia and positron emission computerized axial tomography. In: Horst W, Wagner HN Jr, Buchanan J (eds) Frontiers in nuclear medicine. Springer, Berlin Heidelberg New York, p 20Google Scholar
  476. Schelbert HR, Henze E, Phelps ME (1980b) Emission tomography of the heart. Semin Nucl Med X: 355–373CrossRefGoogle Scholar
  477. Schmidlin P (1972) Iterative separation of sections in tomographie scintigrams. Nuklearmedizin XI: 1–16Google Scholar
  478. Schmidlin P (1973) Zerlegung der Aufnahmen der symmetrischen Positronenkamera in einzelne Bildebenen mit Hilfe eines mathematischen Verfahrens. In: Pabst HW (Hrsg) Nuklearmedizin 1971. Schattauer, Stuttgart, S 295Google Scholar
  479. Schmitz-Feuerhake I (1970) Studies on three-dimensional scintigraphy with y-y-coincidences. Phys Med Biol 15: 649–656PubMedCrossRefGoogle Scholar
  480. Schober O, Meyer GJ, Bossaller C, Lobenhoffer P, Knoop B, Müller S, Creutzig H, Sturm J, Lichtlen P, Hundeshagen H (1983) Quantitative Messung des regionalen extravaskulären Lungenwassers bei Hunden mit der Positronen-Emissionstomographie. Fortschr Röntgenstr 139: 117–126CrossRefGoogle Scholar
  481. Schön HR, Schelbert HR, Phelps ME (1983) Positronen-Computertomographie: Eine neue Methode zur quantitativen Bestimmung von Stoffwechsel, Durchblutung und Funktion des Herzens. I. Technische und experimentelle Grundlagen. Nucl Med XXII: 171–180Google Scholar
  482. Shepp LA, Logan BF (1974) The fourier reconstruction of a head section. IEEE Trans Nucl Sci NS-21/3: 21–43Google Scholar
  483. Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag MI-1/2: 113–122CrossRefGoogle Scholar
  484. Shosa D, Kaufman L (1981) Methods for evaluation of diagnostic imaging instrumentation. Phys Med Biol 26: 101–112PubMedCrossRefGoogle Scholar
  485. Singh M (1983) An electronically collimated gamma camera for single photon emission computed tomography. Part I: Theoretical considerations and design criteria. Med Phys 10: 421–427PubMedCrossRefGoogle Scholar
  486. Singh M, Doria D (1981) Computer simulation of image rekonstruction with a new electronically collimated gamma tomography systems. SPIE vol 273. Applicat Optic Instr Med IX: 192–200Google Scholar
  487. Singh M, Doria D (1983) An electronically collimated gamma camera for single photon emission computed tomography. Part II. Image reconstruction and preliminary experimental measurements. Med Phys 10: 428–435PubMedCrossRefGoogle Scholar
  488. Smalling RW (1983) The spectrum of Thallium-201 imaging in coronary artery disease. Teaching editorial. J Nucl Med 24: 854–858PubMedGoogle Scholar
  489. Smith DB, Cumpstey DE, Evans NTS, Coleman JD, Ettinger KV, Mallard JR (1982) A scanner for single photon emission tomography. In: Raynaud C (ed) Nuclear medicine and biology II. Perga-mon, Paris, p 1221Google Scholar
  490. Snyder DL, Cox JR Jr (1977) An overview of reconstructive tomography and limitations imposed by a finite number of projections. In: Ter-Pogossian MM et al (eds) Reconstruction tomography in diagnostic radiology and nuclear medicine. Univ Park Press, Baltimore, p 3Google Scholar
  491. Snyder DL (1982) Some noise comparisons of data-collection arrays for emission tomography-systems having time-of-flight measurements. IEEE Trans Nucl Sci NS-29/1: 1029–1033Google Scholar
  492. Snyder DL (1984) Utilizing side information in emission tomography. IEEE Trans Nucl Sci NS-31/ 1: 533–537CrossRefGoogle Scholar
  493. Snyder DL, Politte DG (1983) Image reconstruction from list-mode data in an emission tomography system having time-of-flight measurements. IEEE Trans Nucl Sci NS-30/3: 1843–1849Google Scholar
  494. Snyder DL, Thomas LJ, Ter-Pogossian MM (1981) A mathematical model for positron-emission tomography systems having time-of-flight measurements. IEEE Trans Nucl Sci NS-28/3: 3575–3583Google Scholar
  495. Sorensen JA (1974) Methods for quantitative measurements of radioactivity in vivo by whole body counting. In: Hine GJ, Sorensen JA (eds) Instrumentation in nuclear medicine, vol 2. Academic Press, New York, pp 311–348Google Scholar
  496. Soussaline F, Le Coq G (1983) A regularizing method for quantitative SPECT reconstruction. IEEE Trans Med Imag MI-2/1: 24–30Google Scholar
  497. Soussaline F, Todd-Pokropek AE, Comar D, Raynaud C, Kellershohn C (1981 a) Potential and limits of quantitative studies in emission tomography. In: IAEA (ed) Medical radionuclide imaging 1980, vol I. IAEA, Vienna, p 231Google Scholar
  498. Soussaline FP, Todd-Pokropek AE, Zurowski S, Huffer E, Raynaud CE, Kellershohn CL (1981 b) A rotating conventional gamma camera single-photon tomographic system: Physical characterization. J Comput Assist Tomogr 5:551–556CrossRefGoogle Scholar
  499. Soussaline FP, Cao A, Le Coq G, Raynaud C, Kellershohn C (1982) An analytical approach to single photon emission computed tomography with the attenuation effect. Eur J Nucl Med 7: 487–493PubMedCrossRefGoogle Scholar
  500. Stark H, Woods JW, Paul J, Hingorani R (1981) An investigation of computerized tomography by direct fourier inversion and optimum interpolation. IEEE Trans Biomed Eng BME-28/7: 496–505Google Scholar
  501. Stoddart HF, Stoddart HA (1979) A new development in single gamma transaxial tomography — union carbide focused collimator scanner. IEEE Trans Nucl Sci NS-26/2: 2710–2712Google Scholar
  502. Stokely EM (1982) A contigous-slice design for single-photon emission tomography (SPECT). J Nucl Med 23: 355–356PubMedGoogle Scholar
  503. Stokely EM, Sveinsdottir E, Lassen NA, Rommer P (1980) A single photon dynamic computer assisted tomograph (DCAT) for imaging brain function in multiple cross sections. J Comput Assist Tomogr 4: 230–240PubMedCrossRefGoogle Scholar
  504. Strauss L, Bostel F, Clorius JH, Raptou E, Wellman H, Georgi P (1982) Single-photon emission computed tomography (SPECT) for assessment of hepatic lesions. J Nucl Med 23: 1059–1065PubMedGoogle Scholar
  505. Syrota A, Comar D, Cerf M, Plummer D, Maziere M, Kellershohn C (1979) C-11 methionine pancreatic scanning with positron emission computed tomography. J Nucl Med 20: 778–781PubMedGoogle Scholar
  506. Takami K, Ueda K, Okajima K, Tanaka E, Nohara N, Tomitani T, Yamamoto M, Murayama H, Shishido F, Ishimatsu K, Ohgushi A, Inoue S, Takakusa Y, Hayashi T, Nakase S (1983) Performance study of whole-body, multislice positron computed tomograph — positologica-II. IEEE Trans Nucl Sci NS-30: 734–738Google Scholar
  507. Tam KC (1983) Multispectral limited-angle image reconstruction. IEEE Trans Nucl Sci NS-30/1: 697–700CrossRefGoogle Scholar
  508. Tam KC, Perez-Mendez V (1981) Limits to image reconstruction from restricted angular input. IEEE Trans Nucl Sci NS-28/1: 179–183CrossRefGoogle Scholar
  509. Tam KC, Perez-Mendez V (1983) Improving gated cardiac scanning using limited-angle reconstruction technique. IEEE Trans Nucl Sci NS-30/ 1: 681–685CrossRefGoogle Scholar
  510. Tam KC, Chu G, Perez-Mendez V, Lim CB (1978) Three dimensional reconstruction in planar positron cameras using fourier deconvolution of generalized tomograms. IEEE Trans Nucl Sci NS-25/ 13: 152–159CrossRefGoogle Scholar
  511. Tam KC, Perez-Mendez V, Macdonald B (1979) 3-D object reconstruction in emission and transmission tomography with limited angular input. IEEE Trans Nucl Sci NS-26/2:2797–2805Google Scholar
  512. Tam KC, Perez-Mendez V, Macdonald B (1980) Limited angle 3-D reconstruction from continuous and pinhole projections. IEEE Trans Nucl Sci NS-27/1: 445–458Google Scholar
  513. Tamaki N, Mukai T, Ishii Y, Yonekura Y, Kambara H, Kawai C, Torizuka K (1981) Clinical evaluation of thallium-201 emission myocardial tomography using a rotating gamma camera: Comparison with seven-pinhole tomography. J Nucl Med 22: 849–855PubMedGoogle Scholar
  514. Tamaki N, Mukai T, Ishii Y, Fujita T, Yamamoto K, Minato K, Yonekura Y, Tamaki S, Kambara H, Kawai C, Torizuka K (1982) Comparative study of thallium emission myocardial tomography with 180° and 360° data collection. J Nucl Med 23: 661–666PubMedGoogle Scholar
  515. Tanaka E (1982) Line-writing data acquisition and signal-to-noise ratio in time-of-flight positron emission tomography. In: IEEE (ed) 1982 workshop on time-of-flight tomography. IEEE Cornputer Soc, Los Angeles, pp 101–108Google Scholar
  516. Tanaka E (1983) Quantitative image reconstruction with weighted backprojection for single photon emission computed tomography. J Comput Assist Tomogr 7: 692–700PubMedCrossRefGoogle Scholar
  517. Tanaka E, Iinuma TA (1974) Image formation in coded aperture imaging and its application to a rotating slit aperture. In: WFNBM (ed) Proceedings of the First World Congress of Nuclear Medicine. WFNMB, Tokyo Kyoto, p 9Google Scholar
  518. Tanaka E, linuma TA (1976) Image processing for coded aperture imaging and an attempt at rotating slit imaging In: Raynaud C, Todd-Pokropek A (eds) Information processing in scintigraphy. CEN, Saclay, p 43Google Scholar
  519. Tanaka E, Nohara N, Yamamoto M, Tomitani T, Murayama H, Ishimatsu K, Takami K (1979) Positologica — The search for suitable detector arrangements for a positron ECT with continuous rotation. IEEE Trans Nucl Sci NS-26/2: 2728–2731Google Scholar
  520. Tanaka M, Hirose Y, Koga K, Hattori H (1981) Engineering aspects of a hybrid emission computed tomograph. IEEE Trans Nucl Sci NS-28/ 1: 137–141CrossRefGoogle Scholar
  521. Tanaka E, Nohara N, Tomitani T, Endo M (1982) Analytical study of the performance of a multiplier positron computed tomography scanner. J Comput Assist Tomogr 6: 350–364PubMedCrossRefGoogle Scholar
  522. Tanaka E, Toyama H, Murayama H (1984) Convolutional image reconstruction for quantitative single photon emission computed tomography. Phys Med Biol29: 1489–1500PubMedCrossRefGoogle Scholar
  523. Ter-Pogossian MM (1977) Basic principles of computed axial tomography. Semin Nucl Med VII: 109–127CrossRefGoogle Scholar
  524. Ter-Pogossian MM (1981) Special characteristics and potential for dynamic function studies with PET. Semin Nucl Med XI: 13–23CrossRefGoogle Scholar
  525. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA (1975) A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114: 89–98PubMedGoogle Scholar
  526. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Coleman RE (1977) The performance of PETT III. In: Ter-Pogossian MM et al. (eds) Reconstruction tomography in diagnostic radiology and nuclear medicine. Park, Baltimore, p 359Google Scholar
  527. Ter-Pogossian MM, Mullani NA, Wood J, Higgins CS, Currie CM (1978 a) A multislice positron emission computed tomograph (PETT IV) yielding transverse and longitudinal images. Radiology 128:477–484Google Scholar
  528. Ter-Pogossian MM, Mullani NA, Hood JT, Higgins CS, Ficke DC (1978 b) Design considerations for a positron emission transverse tomograph (PETT V) for imaging of the brain. J Comput Assist Tomogr 2: 539–544CrossRefGoogle Scholar
  529. Ter-Pogossian NM, Mullani NA, Ficke DC, Markham J, Snyder DL (1981) Photon time-of-flightassisted positron emission tomography. J Corn-put Assist Tomogr 5: 227–239CrossRefGoogle Scholar
  530. Ter-Pogossian MM, Ficke DC, Yamamoto M, Hood Sr JT (1982 a) Super PETT I: A positron emission tomograph utilizing photon time-of-flight information. IEEE Trans Med Imag MI-1/3:179–187Google Scholar
  531. Ter-Pogossian MM, Ficke DC, Hood Sr JT, Yamamoto M, Mullani NA (1982b) PETT VI: A positron emission tomograph utilizing cesium fluoride scintillation detectors. J Comput Assist Tomogr 6: 125–133CrossRefGoogle Scholar
  532. Ter-Pogossian MM, Bergmann SR, Sobel BE (1982c) Influence of cardiac and respiratory motion on tomographic reconstructions of the heart: Implications for quantitative nuclear cardiology. J Comput Assist Tomogr 6: 1148–1155CrossRefGoogle Scholar
  533. Thompson CJ, Yamamoto YL, Meyer E (1979) Posi-tome II: A high efficiency positron imaging device for dynamic brain studies. IEEE Trans Nucl Sci NS-26/1: 583–589Google Scholar
  534. Todd-Pokropek A (1980) Image processing in nuclear medicine. IEEE Trans Nucl Sci NS-27/ 3: 1080–1094CrossRefGoogle Scholar
  535. Todd-Pokropek A (1982) Single photon emission computerized tomography (SPECT): Quality control and assurance. In: Höfer R, Bergmann H (Hrsg) Radioaktive Isotope in Klinik and Forschung, 15. Bd. Egermann, Wien, S 539Google Scholar
  536. Todd-Pokropek A (1983 a) Non-circular orbits for the reduction of uniformity artefacts in SPECT. Phys Med Biol 28:309–313Google Scholar
  537. Todd-Pokropek A ( 1983 b) The Mathematics and physics of emission computerized tomography (ECT). In: Esser PD (ed) Emission computed tomography: Current Trends. Soc Nucl Med, New York, p 3Google Scholar
  538. Todd-Pokropek AE, Jarritt PH (1982) The noise characteristics of SPECT systems. In: Ell PJ, Holman BL (eds) Computed emission tomography. Oxford Univers Press, Oxford, p 361Google Scholar
  539. Todd-Pokropek A, Soussaline F (1982) Quality control of SPECT systems: Removal of artefacts. In: Raynaud C (ed) Nuclear medicine and biology I. Pergamin, Paris, p 1018Google Scholar
  540. Todd-Pokropek A, Clarke G, Marsh R, Gillardi MC, Fazio F (1984) SPECT quantitation: The need for scatter and attenuation correction. In: Höfer R, Bergmann H (eds) Radioaktive Isotope in Klinik and Forschung, Bd 16/2. Egermann, Wien, pp 613–625Google Scholar
  541. Tomitani T (1981) Image reconstruction and noise evaluation in photon time-of-flight assisted positron emission tomography. IEEE Trans Nucl Sci NS-28/6: 4582–4589Google Scholar
  542. Tomitani T (1982) Simulation study of reconstruction with practical writing functions and noise evaluation in time-of-flight assisted positron cornputed tomography. In: IEEE (ed) 1982 workshop on time-of-flight tomography. IEEE Computer Soc, Los Angeles, p 117Google Scholar
  543. Townsend DW, Zanella P (1980) Computational aspects of positron imaging using multiwire proportional chambers in nuclear medicine. Nucl Instr Meth 176: 397–401CrossRefGoogle Scholar
  544. Townsend D, Piney C, Jeavons A (1978) Object reconstruction from focused positron tomograms. Phys Med Biol 23: 235–244PubMedCrossRefGoogle Scholar
  545. Townsend D, Schorr B, Jeavons A (1980) Three-dimensional image reconstruction for a positron camera with limited angular acceptance. IEEE Trans Nucl Sci NS-27/1: 463–470Google Scholar
  546. Tretiak OJ, Delaney P (1978) The exponential convolution algorithm for emission computed axial tomography. In: Proc 5th Intern Conf on Information Processing in Med Imaging, Oak Ridge Rep ORNL/BCJIC-2, pp 266–268Google Scholar
  547. Tretiak OJ, Metz CE (1980) The exponential radon transform. SIAM J Appl Math 39: 341–354CrossRefGoogle Scholar
  548. Truong TK, Reed IS, Jonckheere EA, Kwoh YS (1983) A modified reconstruction filter for diverg-ing X-ray beams. IEEE Trans Biomed Eng BME30/7: 423–426Google Scholar
  549. Tsui E, Budinger TF (1978) Transverse section imaging of mean clearence time. Phys Med Biol 23: 64–653Google Scholar
  550. Tsui BMW, Jaszczak RJ (1984) Interactions of collimator, sampling and filtering on SPECT spatial resolution. IEEE Trans Nucl Sci NS-31/1: 527–532Google Scholar
  551. Turner DA, Ramachandran PC, Ali AA, Fordham EW, Ferry TA (1976a) Brain scanning with the anger multiplane tomographic scanner as a primary examination. Radiology 121: 125–129Google Scholar
  552. Turner DA, Fordham EW, Paganow JV, Ali AA, Ramos MV, Ramachandran PC (1976b) Brain scanning with the anger multiplane tomographic scanner as a second examination. Radiology 121: 115–124Google Scholar
  553. Uemura K, Kanno I, Miura Y, Miura S, Tominaga S (1982) Tomographic study of regional cerebral blood flow in ischemic cerebrovascular disease by Kr-81m intraarterial infusion and HEADTOME. J Comput Assist Tomogr 6: 677–682PubMedCrossRefGoogle Scholar
  554. Van Sciver, Hofstadter R (1952) Gamma and alpha produced scintillations in cesium fluoride. Phys Rev 87: 522CrossRefGoogle Scholar
  555. Vogel RA, Kirch DL, Le Free MT, Steele PP (1978) A new method of multiplanar emission tomography using a seven pinhole collimator and an anger scintillation camera. J Nucl Med 19: 648–654PubMedGoogle Scholar
  556. Vogel RA, Kirch DL, Le Free MT, Rainwater JO, Jensen DP, Steele PP (1979) Thallium-201 myocardial perfusion scintigraphy: Results of standard and multi-pinhole tomographic techniques. Am J Cardiol 43: 787–793PubMedCrossRefGoogle Scholar
  557. Vogel RA, Le Free MT, Kirch DL (1980) Rapid and inexpensive cardiac tomography using a widefield anger camera. In: Horst W, Wagner Jr HN, Buchanan J (eds) Frontiers in nuclear medicine. Springer, Berlin Heidelberg New York, p 79CrossRefGoogle Scholar
  558. Vyska K, Höck A, Freundlieb C, Becker V, Schmidt A, Feinendegen LE, Kloster G, Stöcklin G (1981) Stoffwechseluntersuchung am Herzen mit J-123-Fettsäuren und C-11-Methylglukose. Nucl Med XX: 148–155Google Scholar
  559. Vyska K, Freundlieb C, Höck A, Becker V, Schmidt A, Feinendegen LE, Kloster G, Stöcklin G, Heiss WD (1982) Analysis of local perfusion rate (LPR) and local glucose transport rate (LGTR) in brain and heart in man by means of C-11-Methyl-Dglucose (CMG) and dynamic positron emission tomography (DPET). In: Höfer R, Bergmann H (Hrsg) Radioaktive Isotope in Klinik und Forschung. Egermann, Wien, S 129Google Scholar
  560. Wagner HN Jr (1978) Images of the future. J Nucl Med 19: 599–605PubMedGoogle Scholar
  561. Wagner HN Jr (1983) Notes and impressions from meetings. Two positron emission tomography meetings. J Comput Assist Tomogr 7: 1128–1131CrossRefGoogle Scholar
  562. Walters TE, Simon W, Chesler DA, Correia JA (1981) Attenuation correction in gamma emission computed tomography. J Comput Assist Tomogr 5: 89–94PubMedCrossRefGoogle Scholar
  563. Webb S, Flower MA, Ott RJ, Leach MO, Grey LJ (1982) A physical evaluation of three pinhole tomography. In: Raynaud (ed) Nuclear medicine and biology I. Pergamon, Paris, p 469Google Scholar
  564. Webb S, Flower MA, Ott RJ, Leach MO (1983) A comparison of attenuation correction methods for quantitative single photon emission computed tomography. Phys Med Biol 28: 1045–1056PubMedCrossRefGoogle Scholar
  565. Weiss GH, Talbert AJ, Brooks RA (1982) The use of phantom views to reduce CT-streaks, due to insufficient angular sampling. Phys Med Biol 27: 1151–1162PubMedCrossRefGoogle Scholar
  566. Whitehead FR (1977) Quantitative analysis of minimum detectable lesion-to-background uptake ratios for nuclear medicine imaging systems. In: IAEA (ed) Medical radionuclide imaging, vol 1. Vienna, pp 409–434Google Scholar
  567. Williams CW, Crabtree MC, Burgiss SG (1979) Design and performance characteristics of a positron emission computed axial tomograph: ECAT II. IEEE Trans Nucl Sci NS-26/1: 619–627Google Scholar
  568. Williams CW, Crabtree MC, Burke MR, Keyser RM, Burgiss SG, Hoffman EJ, Phelps ME (1981) Design of the neuro-ECAT: A high resolution, high efficiency positron tomograph for imaging the adult head or infant torso. IEEE Trans Nucl Sci NS-28/2: 1736–1740Google Scholar
  569. Williams DL, Ritchie JL, Harp GD, Caldwell JH, Hamilton GW (1980) In-vivo simulation of Thallium-201 myocardial scintigraphy by seven-pinhole emission tomography. J Nucl Med 21: 821–828PubMedGoogle Scholar
  570. Williams DL, Ritchie JL, Harp GD, Caldwell JH, Hamilton GW (1980) In vivo simulation of Thallium-201 myocardial scintigraphy by seven-pinhole emission tomography. J Nucl Med 21: 821–828PubMedGoogle Scholar
  571. Williams JJ, Knoll GF (1979) Initial performance of SPRINT: A single photon system for emission tomography. IEEE Trans Nucl Sci NS-26/ 2: 2732–2735CrossRefGoogle Scholar
  572. Williams JJ, Snapp WP, Knoll GF (1979) Introducing SPRINT: A single photon ring system for emission tomography. IEEE Trans Nucl Sci NS-26/1: 628–633Google Scholar
  573. Wilson BC, Parker RP (1975) Digital processing of images from a zone-plate camera. Phys Med Biol 20: 757–770PubMedCrossRefGoogle Scholar
  574. Wolf AP (1981) Special characteristics and potential for radiopharmaceuticals for positron emission tomography. Semin Nucl Med XI: 2–12CrossRefGoogle Scholar
  575. Wong WH, Mullani NA, Philippe EA, Hartz R, Gould KL (1983) Image improvement and design optimization of the time-of-flight PET. J Nucl Med 24: 52–60PubMedGoogle Scholar
  576. Wood SL, Macovski A, Morf M (1979) Reconstruction with limited data using estimation theory. In: Raviv et al. (eds) Computer aided tomography and ultrasonics in medicine. North-Holland, Amsterdam, p 219Google Scholar
  577. Yamamoto M, Kawaguchi F (1982) Quad-detector arrangement and sampling characteristics in rotary positron tomography: Positologica II. IEEE Trans Med Imag MI-1/2: 136–142Google Scholar
  578. Yamamoto M, Ficke DC, Ter-Pogossian NM (1982a) Experimental assessment of the gain-achieved by the utilization of time-of-flight information in a positron emission tomograph (Super PETT I). IEEE Trans Med Imag MI-1/3: 187–192Google Scholar
  579. Yamamoto M, Ficke DC, Ter-Pogossian MM (1982b) Performance study of PETT VI, a positron computed tomograph with 288 cesium fluoride detectors. IEEE Trans Nucl Sci NS-29/ 1: 529–533CrossRefGoogle Scholar
  580. Yamamoto YL, Thompson CJ, Meyer E, Robertson JS, Feindel W (1977) Dynamic positron emission tomography for study of cerebral hemodynamics in a cross section of the head using positron-emitting GA-69-EDTA and KR-77. J Comput Assist Tomogr 1: 43–56PubMedCrossRefGoogle Scholar
  581. Yamashita Y, Uchida H, Yamashita T, Hayashi T (1984) Recent developments in detectors for high spatial resolution positron CT. IEEE Trans Nucl Sci NS-31: 424–428Google Scholar
  582. Yano Y, Chu P, Budinger TF, Grant PM, Ogart AE, Barnes JW, O’Brain HA Jr, Hoop B Jr (1977) Rubidium-82 generators for imaging studies. J Nucl Med 18: 46–50PubMedGoogle Scholar
  583. Yen CK, Budinger TF (1981) Evaluation of blood-brain barrier permeability changes in rhesus monkeys and man using Rb-82 and positron emission tomography. J Comput Assist Tomogr 5: 792–799PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1988

Authors and Affiliations

  • K. Jordan

There are no affiliations available

Personalised recommendations