Target Technique

  • F. Helus
Part of the Handbuch der Medizinischen Radiologie / Encyclopedia of Medical Radiology book series (HDBRADIOL, volume 15 / 1 / B)

Abstract

In the past three decades enormous advances have been made in the production of radioactive tracers, especially with regard to their applications in medical and biological studies (Wagner 1968; Wolf and Fowler 1979; Larson and Carasquillo 1984; Silvester 1976; Ruth and Krohn 1981). Instrumentally it is a very long way for a radioactive tracer from its place of origin to delivery for use as a radiopharmaceutical. Between the physics, as source of the bombarding particles, and the physicians, as users of the tracers, the position of radiochemistry is of great importance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amphlett C, Vonberg DD et al (1970) The use of cyclotron in chemistry, metalurgy and biology. Butterworths, LondonGoogle Scholar
  2. Arrol WJ, Chadwick J, Eakins J (1956) The preparation from irradiated uranium of iodine-131 and certain other fission products. Progress in Nucl Energy, Ser III, Process Chemistry 1. Pergamon, LondonGoogle Scholar
  3. Beaney RP (1984) Positron emission tomography in the study of humane tumors. Seminars in nuchear medicine, vol XIV, no 4 (October), pp 324–341Google Scholar
  4. Belkas HP, Perricos DC (1969) 99mTc production based on the extraction with methyl ethyl ketone. Radiochimica Acta 11: 56Google Scholar
  5. Blessing G et al (1984) A multipurpose target system for high-current irradiations. Fifth Int Symp on Radiopharmaceutical Chemistry, July 9–13, Tokyo, p 270Google Scholar
  6. Boyd RE (1983) The special position of 99mTc in nuclear medicine. In: Helus F (ed) Radionuclide production, vol II. CRC Press, Florida, pp 126–150Google Scholar
  7. Burton G (1970) Cyclotron beam sharing for multiple irradiations. In: Mcllroy RW (ed) Butter-worths, London, p 250Google Scholar
  8. Choppin GR, Rydberg J (1980) Nuclear chemistry. Pergamon, Oxford, pp 173–188Google Scholar
  9. Clark JC, Silvester DJ (1966) A cyclotron method for the production of 18F. Int J Appl Radiat Isot 17: 151PubMedCrossRefGoogle Scholar
  10. Colonomos M, Parker W (1969) Preparation of carrier-free 99Mo by neabs of (n,gamma) recoil. Radiochimica Acta 12: 163Google Scholar
  11. Cuninghame JG et al. (1976) Large scale production of 123I from a flowing liquid target using the (p,5n) reaction. Int J Appl Radiat Isot 27: 597–603CrossRefGoogle Scholar
  12. Ferrieri RA, Wolf AP (1983) The chemistry of positron emitting nucleogenic atoms with regard to preparation of labelled compounds of practical utility. Radiochimica Acta 34: 69–83Google Scholar
  13. Grabmayr P, Nowotny R (1978) Statistical-model based evaluation of reactions producing 123x and 127Xe. Int J Appl Radiat Isot 29: 261–267CrossRefGoogle Scholar
  14. Graham D et al (1984) Enriched Xenon-124 for the production of high-purity Iodine-123 using a CP42 cyclotron. J Nucl Med 25: 32Google Scholar
  15. Helus F, Mahunka I (1986) Cyclotron production of positron emitters in vertical target system. J Radio Analyt Chem (in press)Google Scholar
  16. Helus F, Maier-Borst W (1973) Erhöhte Ausbeute und schnellere, halbautomatische Präparation für in Forschungsreaktoren dargestelltes 18F. Nuklearmedizin 38: 336–339Google Scholar
  17. Helus F, Wolber G (1983) Nuclear data; simple calculus with practical examples and optimum irradiation conditions. In: Helus F (ed) Radionuclide production, vol I. CRC Press, FloridaGoogle Scholar
  18. Helus F, Sahm U et al (1979) Production of 121I on the Heidelberg compact cyclotron and aspects of 121I dosimetry. Radiochem Radioanal Letters 39: 9–18Google Scholar
  19. Helus F, Maier-Borst W et al. (1980) Remotely controlled target system for the routine production of 81Rb. Radiochem Radioanal Letters 44: 187Google Scholar
  20. Helus F, Gasper H et al. (1985) Cyclotron production of 34mCl for biomedical use. J Radioanal Nucl Chem Letters 94: 149–160CrossRefGoogle Scholar
  21. Jones T, Clark JC (1969) A cyclotron produced 81Rb–81mKr generator and its uses in gamma camera studies. Br J Radiol 42: 237PubMedCrossRefGoogle Scholar
  22. Keller KA et al (1973) Q-Values and excitation functions for nuclear reactions. In: Schopper H (ed) Landolt-Börnstein New Series, group I, vol 5. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. Kondo K et al (1977) Improved target and radiochemistry for production of 123I and 124I. Int J Appl Radiat Isot 28: 765–771PubMedCrossRefGoogle Scholar
  24. Larson SM, Carasquillo JA (1984) Nuclear oncology. In: Freeman LM, Blaufox MO (eds) Seminars in nuclear medicine, vol XIV, no 4 (October). Grune and Stratton, Orlando/Florida, pp 268–276Google Scholar
  25. Lebowitz E et al (1975) Thallium-201 for medical use. J Nucl Med 16: 151–155PubMedGoogle Scholar
  26. Lieser KH (1980) Einführung in die Kernchemie. Chemie, Weinheim, S 239–261Google Scholar
  27. Loch C, Maziere B, Comar D (1980) A new generator for ionic 68Ga. J Nucl Med 21: 171–173Google Scholar
  28. Martin JA (1979) Cyclotrons. IEEE Trans Nucl Sci 26: 2443–2651CrossRefGoogle Scholar
  29. Nickles RJ, Daube ME, Ruth TJ (1984) An 18O2 target for the production of 18F2. Int J Appl Radiat Isot 35: 117–122CrossRefGoogle Scholar
  30. Northcliff LC, Shilling RF (1970) Range and stopping-power tables for heavy ions. In: Nuclear data tables, vol 7. no 3–4 (January 1970 ). Academic, New York LondonGoogle Scholar
  31. Richards P (1966) Radioactive pharmaceuticals (Proc Symp Oak Ridge), USAEC Div Techn Inform. Extension, Oak Ridge, p 323Google Scholar
  32. Root J, Krohn K (eds) (1981) Short-lived radiopharmaceuticals in chemistry and biology. ACS Adv in chemistry series monograph. Am Chem Soc Washington/DCGoogle Scholar
  33. Ruth TH, Adam MJ et al (1984) Radionuclide productiop on the Triumf CP-42: A gas target for sequential production of 18F-F2, and 15O-O2. Fifth Int Symp on Radiopharmaceutical Chemistry, July 9–13, Tokyo, p 282Google Scholar
  34. Silvester DJ (1976) Preparation of radiopharmaceuticals and labelled compounds using short-lived radionuclides. In: Newton GWA, Fox BW, Harbottle GR, Heslap JA (eds) Radiochemistry, vol 3. The Chemical Society, Burlington House, London, p 73CrossRefGoogle Scholar
  35. Silvester DJ, Waters S (1979) Second international symposium on radiopharmaceuticals, March 19–22 1979, SeattleGoogle Scholar
  36. Smith EM (1964) Properties, uses, radiochemical purity, and calibration of 99mTc. J Nucl Med 5: 871PubMedGoogle Scholar
  37. Stöcklin G (1977) Bromine-77 and Iodine-123 radio-pharmaceuticals. Int J Appl Radiat Isot 28: 131–148PubMedCrossRefGoogle Scholar
  38. Szillard L, Chalmers TA (1934) Chemical separation of the radioactive element from its bombarded isotope in the Fermi effect. Nature 134: 462CrossRefGoogle Scholar
  39. Thakur ML (1983) Radioactive compounds of Gallium and Indium. In: Rayudu GVS (ed) Radio-tracers for medical applications, vol 1. CRC Press, Florida, pp 187–218Google Scholar
  40. Tilbury RS, Dahl JR et al (1971) The production of 13N labelled ammonia for medical use. Radiochem Radioanal Letters 8: 317Google Scholar
  41. Wagner HN (ed) (1968) Principles of nuclear medicine. Saunders, PhiladelphiaGoogle Scholar
  42. Wieland BW et al (1984) Multipurpose target unit for small cyclotrons. Fifth Int Symp on Radio-pharmaceutical Chemistry, July 9–13, Tokyo, p 268Google Scholar
  43. Williamson CF et al (1973) Tables of range and stopping powers of chemical elements for charged particles of energy 0.5 to 500 MeV. CEA-R 3042 Report Commissariat d’energy Atomique, Centre d’etudes Nucleaires. Saclay, EssoneGoogle Scholar
  44. Wolf AP, Fowler JS (1979) Organic radiopharmaceuticals, recent advances, in radiopharmaceuticals II. Society of Nuclear Medicine, New York, p 73Google Scholar
  45. Wolf AP, Redwanly CS (1977) Carbon-11 and radiopharmaceuticals. Int J Appl Radiat Isot 28: 29–48PubMedCrossRefGoogle Scholar
  46. 11C, 13N 15O and 18F target and processing systems. Prospect from Instrument AB Scanditronix. Huysborg, Uppsala/SwedenGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1988

Authors and Affiliations

  • F. Helus

There are no affiliations available

Personalised recommendations