Advertisement

Magnetic Field Induced Metal-Nonmetal Transition in GaAs-GaAlAs Heterostructures with a Spacer

  • A. Raymond
  • J. L. Robert
  • C. Bousquet
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 71)

Abstract

The metal-nonmetal transition in GaAs-GaAlAs heterostructures has been investigated by transport experiments in the presence of a magnetic field and hydrostatic pressure. The binding energy of magnetodonors, composed of donor atoms in the doped layer of Ga1-xAlxAs and electrons in GaAs separated from one another by a spacer, has been determined as a function of magnetic field for different surface densities controlled by the pressure. A simple model is presented which accounts qualitatively for the observed effects.

Keywords

Hydrostatic Pressure High Magnetic Field Donor Atom Surface Electron Critical Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Robert, A. Raymond, L. Konczewicz, C. Bousquet, W. Zawadzki, F. Alexandre, I.M. Masson, J.P. André P.M. Frijlink: Phys. Rev. B33, 5935 (1986)ADSGoogle Scholar
  2. 2.
    L. Esaki, R. Tsu: IBM Research Note RC 2418 (1969)Google Scholar
  3. 3.
    R. Dingle, H.L. Stormer, A.C. Gossard, W. Wiegmann: Appl. Phys. Lett. 33, 665 (1978)CrossRefADSGoogle Scholar
  4. 4.
    H.L. Störmer, R. Dingle, A.C. Gossard, W. Wiegmann, M.D. Sturge: Solid State Commun. 29, 705 (1979)CrossRefADSGoogle Scholar
  5. 5.
    A. Raymond: Proc. Int. Conf. “The Application of High Magnetic Fields in Semiconductor Physics”. Grenoble 1982. Lecture Notes in Physics, Vol. 177 (Springer-Verlag, Berlin, Heidelberg (1983) p.344; J.L. Robert, A. Raymond, R.L. Aulombard, C. Bousquet, Philos. Mag. B42, 1003 (1980)Google Scholar
  6. 6.
    N. Chand, T. Henderson, J. Klem, W.T. Masselink, R. Fischer, Y.C. Chang, H. Morkoc: Phys. Rev. B 30, 4481 (1984)CrossRefADSGoogle Scholar
  7. 7.
    A.K. Saxena: J. Phys. C. 13, 4323 (1980)CrossRefADSGoogle Scholar
  8. 8.
    H.J. Lee, L.Y. Juravel, J.C. Woolley: Phys. Rev. B21, 659 (1980)ADSGoogle Scholar
  9. 9.
    A.K. Saxena: Appl. Phys. Lett. 36, 79 (1980)CrossRefADSGoogle Scholar
  10. 10.
    R.J. Nelson: Appl. Phys. Lett. 31, 351 (1977)CrossRefADSGoogle Scholar
  11. 11.
    J.M. Mercy, C. Bousquet, J.L. Robert, A. Raymond, G. Gregoris, J. Beerens, J.C. Portal, P.M. Frijlink, P. Delescluse, J. Chevrier, N.T. Linh: Surf. Sci. 142, 298 (1984)CrossRefADSGoogle Scholar
  12. 12.
    E.E. Mendez, M. Heiblum, L.L. Chang, L. Esaki: Phys. Rev. B28, 4486 (1983)ADSGoogle Scholar
  13. 13.
    G. Bastard (private communication).Google Scholar
  14. 14.
    Y. Yafet, R.W. Keyes, E.N. Adams: J. Phys. Chem. Solids, 1, 137 (1956)CrossRefADSGoogle Scholar
  15. 15.
    W. Zawadzki, M. Kubisa: to be published.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • A. Raymond
    • 1
  • J. L. Robert
    • 1
  • C. Bousquet
    • 1
  1. 1.Groupe d’Etude des Semiconducteurs (Associé au CRNS no. UA357)Université des Sciences et Techniques du LanguedocMontpellierFrance

Personalised recommendations