Advertisement

Oscillatory Current-Voltage Characteristics and Magnetocapacitance Effects in Single Barrier n + GaAs/ (AlGa)As/n-GaAs/n + GaAs Heterostructures

  • L. Eaves
  • D. K. Maude
  • F. W. Sheard
  • G. A. Toombs
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 71)

Abstract

The LO phonon-related oscillatory structure in the reverse-bias J(V) curves of single-barrier GaAs/(AlGa)As heterostructures is described and explained by the variation of the impedance of the undepleted section of the n-GaAs layer. The anomalous behaviour of the magnetocapacitance is also accounted for, without invoking magnetic freeze-out of carriers throughout the complete length of n- layer. An analysis is given of new magnetocapacitance data including the oscillatory structure in C(V).

Keywords

Impact Ionisation High Magnetic Field Reverse Bias Depletion Layer Depletion Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.W. Hickmott, P.M. Solomon, F.F. Fang, F. Stern, R. Fischer and H. Morkoc Phys. Rev. Lett. 52, 2053 (1984).CrossRefADSGoogle Scholar
  2. 2.
    T.W. Hickmott, P.M. Solomon, F.F. Fang, R. Fischer and H. Morkoc, Proc. Int. Conf. on Physics of Semiconductors, San Francisco (publ. Springer) pp.417–20 (1984).Google Scholar
  3. 3.
    L. Eaves, P.S.S. Guimaraes, B.R. Snell, D.C. Taylor, K.E. Singer, Phys. Rev. Lett. 53, 262 (1985).CrossRefADSGoogle Scholar
  4. 4.
    P.S.S. Guimaraes, D.C. Taylor, B.R. Snell, L. Eaves, K.E. Singer, G. Hill, M.A. Pate, G.A. Toombs and F.W. Sheard, J. Phys. C: Solid State 18, L605 (1985).CrossRefADSGoogle Scholar
  5. 5.
    D.C. Taylor, P.S.S. Guimaraes, B.R. Snell, L. Eaves, F.W. Sheard, G.A. Toombs and K.E. Singer, Physica 134B, 12 (1985).Google Scholar
  6. 6.
    L. Eaves, P.S.S. Guimaraes, F.W. Sheard, B.R. Snell, D.C. Taylor, G.A. Toombs and K.E. Singer, J. Phys. C: Solid State 18, L885 (1985).CrossRefADSGoogle Scholar
  7. 7.
    L. Eaves, P.S.S. Guimaraes, B.R. Snell, F.W. Sheard, D.C. Taylor, G.A. Toombs, J.C. Portal, L. Dmowski, K.E. Singer, G. Hill and M.A. Pate, Superlattices and Microstructures 2, 49 (1986).CrossRefADSGoogle Scholar
  8. 8.
    D.C. Taylor, P.S.S. Guimaraes, B.R. Snell, F.W. Sheard, L. Eaves, G.A. Toombs J.C. Portal, L. Dmowski, K.E. Singer, G. Hill and M.A. Pate, Proc. Int. Conf. on Modulated Semiconductor Structures, Kyoto, to be publ. in Surface Science (1986). See also G.A. Toombs, F.W. Sheard and L. Eaves, Phonon Physics, publ. World Scientific, 561 (1985).Google Scholar
  9. 9.
    J.P. Leburton, Phys. Rev. B31 4080, (1985).ADSGoogle Scholar
  10. 10.
    E.S. Hellman, J.S. Harris, C. Hanna and R.B. Laughlin, Physica 134B, 41 (1985).Google Scholar
  11. 11.
    J.R. Barker, ibid, p.22.Google Scholar
  12. 12.
    J.P. Leburton, ibid, p.32.Google Scholar
  13. 13.
    E.S. Hellman, J.S. Harris, Phys. Rev. B33, 8284 (1986).ADSGoogle Scholar
  14. 14.
    J. Ihm, Phys. Rev. Lett. 55, 999 (1985).CrossRefADSGoogle Scholar
  15. 15.
    C.B. Hanna and R.B. Laughlin, Phys. Rev. Lett. 56, 2547 (1986).CrossRefADSGoogle Scholar
  16. 16.
    J. Ihm, Phys. Rev. Lett. 56, 2548 (1986).CrossRefADSGoogle Scholar
  17. 17.
    T. Wang, J.P. Leburton, K. Hess and D. Bailey, Phys. Rev. B33, 2906 (1986).ADSGoogle Scholar
  18. 18.
    T.W. Hickmott, Phys. Rev. B32, 6531 (1985).ADSGoogle Scholar
  19. 19.
    T.W. Hickmott, P.M. Solomon, R. Fischer and H. Morkoc, J. Appl. Phys. 57, 2844 (1985).Google Scholar
  20. 20.
    R.L.F. Boyd and A. Boksenberg, Proc. Int. Conf. on Ionisation Phenomena in Gases, Uppsala, p.529 (publ. North Holland) (1959).Google Scholar
  21. 21.
    J.E. Golden and J.H. McGuire, Phys. Rev. Lett. 32, 1218 (1974).CrossRefADSGoogle Scholar
  22. 22.
    J.W. McGowan, J.F. Williams and E.K. Curley, Phys. Rev. 180, 132 (1969).CrossRefADSGoogle Scholar
  23. 23.
    J.M. Chamberlain, A.A. Reeder, L.M. Claessen, G.L.J. A. Rikken and P. Wyder Physica 134B, 426 (1985) and references therein.Google Scholar
  24. 24.
    J.A. Kash, J.C. Tsang and J.M. Huan, Phys. Rev. Lett. 54, 2151 (1985).CrossRefADSGoogle Scholar
  25. 25.
    R.A. Stradling, L. Eaves, R.A. Hoult, A.L. Mears and R.A. Wood, Proc. Int. Conf. on Semiconductors, Boston (publ. USAEC/DTI) p.369 (1970).Google Scholar
  26. 26.
    L. Eaves and J.C. Portal, J. Phys. C: Solid State, 12, 2809 (1979).CrossRefADSGoogle Scholar
  27. 27.
    See for example B.I. Shklovskii and A.L. Efros, Springer Series in Solid State Sciences 45, (1984), H. Kahlert, G. Landwehr, A. Schachetzski and H. Salow, Z. Phys. B24, 361 (1976), and D.C. Taylor et al., to be published.Google Scholar
  28. 28.
    The derivation of the equivalent circuitin Figure 1(a) will be described in a paper by F.W. Sheard, G.A. Toombs and L. Eaves submitted to Semiconductor Science and Technology. The circuit in Figure 1 can be represented by a single capacitor C and impedance R* in parallel where C* = [(R1 + R2) (C1R1 + C2R2) - (C1C2) R1R2(1 - ω2 C1R1C2R2)]/F2, R*-1 = [(R1 + R2) + ω2R1R2(C2 1R1 + C2 2R2)]/F2, F2 = (R1 + R2)2 + ω2(C1 + C2)2R2 1R2 2.Google Scholar
  29. 29.
    MOS Physics and Technology, E.H. Nicollian and J.R. Brews, Wiley p.385-90 (1982).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • L. Eaves
    • 1
  • D. K. Maude
    • 1
  • F. W. Sheard
    • 1
  • G. A. Toombs
    • 1
  1. 1.Department of PhysicsUniversity of NottinghamNottinghamUK

Personalised recommendations