Magneto-Luminescence in GaAs-(GaAl)As Superlattices

  • W. Ossau
  • B. Jäkel
  • E. Bangert
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 71)


During the past few years it has become possible to grow systems consisting of alternate layers of different semiconductors with controlled thicknesses and relatively sharp interfaces. These one-dimensional periodic structures, generally referred to as superlattices, are most extensively studied in the system built with alternate layers of GaAs and (GaAl)As. It has been reported by many authors that due to the quantum size effect excitons have a character different from that in bulk material /l/. The exciton becomes quasi-two dimensional, its binding energy is enhanced, the degeneracy of heavy- and light-hole band is removed, resulting in two exciton systems.


Magnetic Field Dependence Alternate Layer Diamagnetic Shift Hole Subbands Electron Subband 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Dingle, Festkörperprobleme, Vol. XV, (Pergamon Braunschweig 1975) p. 21Google Scholar
  2. 2.
    J.C. Maan, G. Belle, A. Fasolino, M. Altarelli and K. Ploog, Phys. Rev. B30 (1984) p. 2253ADSGoogle Scholar
  3. 3.
    N. Miura Y. Iwasa S. Tarucha and H. Okamoto, Proc 17th Intern. Conf. on the Physics of Semiconductors, San Francisco, 1984, p. 360Google Scholar
  4. 4.
    W. Ossau, B. Jäkel, E. Bangert, G. Landwehr and G. Weimann, 2nd Int. Conf. on Modulated Semiconductor Structures, Kyoto 1985,p. 120Google Scholar
  5. 5.
    Y. Nomura, K. Shinozaki and M. Ishii, J. Appl. Phys. 58 (1985), p. 1864CrossRefADSGoogle Scholar
  6. 6.
    M.C. Smith, A: Petrou, C.H. Perry, J.M. Worlock and R.L. Aggarwal Proc. 17th Intern. Conf. on the Physics of Semiconductors, 1984, p. 547Google Scholar
  7. 7.
    D. Cabib, E. Fabri and G. Fioro, Nuovo Cimento 10B, 1972, p. 185ADSGoogle Scholar
  8. 8.
    G. Bastard, E.E. Mendez, L.L. Chang and L. Esaki, Phys. Rev. B26, 1982 p. 1974ADSGoogle Scholar
  9. 9.
    L.M. Roth, B. Lax and S. Zwerdling, Phys. Rev. 114, 1959, p. 90CrossRefADSGoogle Scholar
  10. 10.
    E. Bangert and G. Landwehr, Superlattices and Microstructures 1, 1985, p. 363Google Scholar
  11. 11.
    J.M. Luttinger, Phys. Rev. 102, 1956, p. 1030CrossRefMATHADSGoogle Scholar
  12. 12.
    H.J. Lee, L.Y. Yuraval J.C. Wooley and A.J. Springthorpe, Phys. Rev. B21, 1980, p. 659ADSGoogle Scholar
  13. 13.
    C.R. Pidgeon and R.N. Brown, Phys. Rev. 146, 1966, p. 575CrossRefADSGoogle Scholar
  14. 14.
    R.L. Greene and K.K. Bajaj, Solid State Commun. 45, 1983, p. 831CrossRefADSGoogle Scholar
  15. 15.
    G.D. Sanders and Y.C. Chang, Phys. Rev. B. 32, 1985, p. 5517CrossRefADSGoogle Scholar
  16. 16.
    K.S. Chan, J. Phys. C 19, 1986, p. L125CrossRefADSGoogle Scholar
  17. 17.
    L.J. Sham, Proceedings of the Yamada Conf. on Mod. Semiconductor Structures, Kyoto 1985, p. 573Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • W. Ossau
    • 1
  • B. Jäkel
    • 1
  • E. Bangert
    • 1
  1. 1.Physikalisches Institut der Universität WürzburgWurzburgFed. Rep. of Germany

Personalised recommendations