Localization in Landau Levels of 2D Systems and the Quantum Hall Effect

Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 71)

Abstract

A recent development in understanding the problem of electron localization in two-dimensional systems in strong magnetic fields is reviewed mainly from a theoretical point of view with emphasis on the relation to the quantum Hall effect. It is shown that all the states are localized exponentially except those just at the center of the Landau level in sufficiently strong magnetic fields. The energy of extended states is shifted to the higher energy side with decreasing magnetic field. There is a scaling relation between the diagonal and off-diagonal components of the conductivity tensor.

Keywords

Reso Cond 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Ando, A.B. Fowler and F. Stern: Rev. Mod. Phys. 54, 437 (1982).CrossRefADSGoogle Scholar
  2. 2.
    K. von Klitzing, G. Dorda and M. Pepper: Phys. Rev. Lett.45, 494 (1980).CrossRefADSGoogle Scholar
  3. 3.
    S. Kawaji and J. Wakabayashi: In Physics in High Magnetic Fields, ed. S. Chikazumi and N. Miura (Springer, Berlin, 1981), p.284.Google Scholar
  4. 4.
    T. Ando, Y. Matsumoto and Y. Uemura: J. Phys. Soc. Jpn. 32, 859 (1972).CrossRefADSGoogle Scholar
  5. 5.
    R.B. Laughlin: Phys. Rev. B 23, 5632 (1981).CrossRefADSGoogle Scholar
  6. 6.
    Q. Niu, D.J. Thouless and Y.-S. Wu: Phys. Rev. B 28, 3372 (1985).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    D.C. Licciardello and D.J. Thouless: J. Phys. C 8, 4157 (1975)CrossRefADSGoogle Scholar
  8. 7a.
    D.C. Licciardello and D.J. Thouless: J. Phys. C 11, 925 (1978).CrossRefADSGoogle Scholar
  9. 8.
    E. Abrahams, P.W. Anderson, D.C. Licciardello and T.V. Ramakrishnan: Phys. Rev. Lett. 42, 673 (1979).CrossRefADSGoogle Scholar
  10. 9.
    H. Aoki and T. Ando: Solid State Commun. 38, 1079 (1981).CrossRefADSGoogle Scholar
  11. 10.
    T. Ando: J. Phys. Soc. Jpn. 52, 1893 (1983)CrossRefMathSciNetGoogle Scholar
  12. 10a.
    T. Ando: J. Phys. Soc. Jpn. 53, 3101 (1983)CrossRefADSGoogle Scholar
  13. 10b.
    T. Ando: J. Phys. Soc. Jpn. 53, 3126 (1983).CrossRefADSGoogle Scholar
  14. 11.
    T. Ando and H. Aoki: J. Phys. Soc. Jpn. 54, 2238 (1985).CrossRefADSGoogle Scholar
  15. 12.
    L. Schweitzer, B. Kramer and A. MacKinnon: J. Phys. C 17, 4111 (1984).CrossRefADSGoogle Scholar
  16. 13.
    T. Ando, Y. Matsumoto, Y. Uemura, M. Kobayashi and K.F. Komatsubara: J. Phys. Soc. Jpn. 32, 859 (1972).CrossRefADSGoogle Scholar
  17. 14.
    S. Kawaji and J. Wakabayashi: Surf. Sci. 58, 238 (1976).CrossRefADSGoogle Scholar
  18. 15.
    H. Levine, S.B. Libby and A.M.M. Pruisken, Phys. Rev. Lett. 51, 1915 (1983); Nucl. Phys. B 240, 30; 49; 71 (1984).Google Scholar
  19. 16.
    T. Ando: Surf. Sci. 170, 243 (1986).CrossRefADSGoogle Scholar
  20. 17.
    T. Ando: J. Phys. Soc. Jpn. 55, No.9 (1986).Google Scholar
  21. 18.
    H. Aoki and T. Ando, Surf. Sci. 170, 249 (1986).CrossRefADSGoogle Scholar
  22. 19.
    S. Kawaji: Prog. Theor. Phys. Suppl. 94, 178 (1986).Google Scholar
  23. 20.
    H.P. Wei, A.M. Chang, D.C. Tsui, A.M.M. Pruisken and M. Razeghi: Surf. Sci. 170, 238 (1986).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • T. Ando
    • 1
  1. 1.Institute for Solid State PhysicsUniversity of TokyoTokyo 106Japan

Personalised recommendations