Microcirculatory Changes in Endotoxinemia and Septic Shock

  • K. Messmer
Part of the Update in Intensive Care and Emergency Medicine book series (UICM, volume 4)


In contrast to longstanding beliefs, septic shock in man starts as a rule with a hyperdynamic circulatory state as first described by Waisbren [1] and only in a later phase, turns into the hypodynamic type of shock. During recent years, adequate experimental models of septicemia and endotoxin shock have been developed, e.g. models in which protracted induction of systemic endotoxinemia results in a hyperdynamic circulatory state [2]. From recent experimental, but also from clinical studies, it is apparent that the lung is the first target among all organs for the endotoxins liberated from the pathogenic bacteria. Hyperventilation, tachycardia, fever, hypotension, thrombocytopenia and leukocytopenia are the symptoms heralding imminent severe septicemia.


Septic Shock Endotoxin Shock Limulus Amebocyte Lysate Capillary Perfusion Blood Flow Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Waisbren BA (1964) Gram-negative shock and endotoxin shock (editorial). Am J Med 36: 819–824PubMedCrossRefGoogle Scholar
  2. 2.
    Wichtermann KA, Bane AE, Chaudry IA (1980) Sepsis and septic shock–A review of laboratory models and a proposal. J Surg Res 29: 189–201CrossRefGoogle Scholar
  3. 3.
    Cate JW ten, Buller HR, Sturk A, Levin J (eds) (1985) Bacterial Endotoxins. Structure, Biomedical Significance, and Detection With the Limulus Amebocyte Lysate Test. Alan Liss Inc, New YorkGoogle Scholar
  4. 4.
    Fink PC, Gruner JH (1984) Endotoxinemia in intensive care patients: A longitudinal study with the Limulus Amebocyte Lysate Test. Klin Wschr 62: 986–991Google Scholar
  5. 5.
    Fink PC, Lehr L, Urbaschek RM, Kozak J (1981) Limulus Amebocyte Lysate Test for endotoxemia. Klin Wschr 59: 213–218PubMedCrossRefGoogle Scholar
  6. 6.
    Nagler AL (1980) The circulatory manifestations of bacterial endotoxinemia. In: Microcirculation Vol III, Kaley G, Altura BM (eds) University Park Press, Baltimore pp 107–117Google Scholar
  7. 7.
    Brigham KL, Meyrick B (1986) Endotoxin and lung injury. Am Rev Respir Dis 133: 913927Google Scholar
  8. 8.
    Kreimeier U, Schwarz M, Messmer K (1986) Endotoxin-induced microcirculatory failure in the pig - effectiveness of specific antibody treatment. Langenb Arch Chir (Suppl) 191195Google Scholar
  9. 9.
    Kreimeier U, Yang Zh, Messmer K (1987) The role of fluid replacement in acute endotoxin shock. In: Kox W, Bihari D (eds) Septic shock and the adult respiratory disease syndrome. Springer, Berlin Heidelberg New York London Paris TokyoGoogle Scholar
  10. 10.
    Ball HA, Cook JA, Wise WC, Halushka PV (1986) Role of thromboxane, prostaglandins and leukotrienes in endotoxic and septic shock. Intensive Care Med 12: 116–126PubMedCrossRefGoogle Scholar
  11. 11.
    Lewis DH, Del Maestro R, Arfors K-E (1980) Free radicals in medicine and biology. Acta Physiol Scand (Suppl) 492: 1–168Google Scholar
  12. 12.
    Oettinger W, Peskar BA, Beger HG (1987) Profiles of endogenous prostaglandins F2,, thromboxane A2 and prostacyclin with regard to cardiovascular and organ functions in early septic shock in man. Eur Surg Res 19: 65–77PubMedCrossRefGoogle Scholar
  13. 13.
    Redl H, Schlag G, Hammerschmidt DE (1984) Quantitative assessment of leukostasis in experimental hypovolemic-traumatic shock. Acta Chir Scand 150: 113–117PubMedGoogle Scholar
  14. 14.
    Bagge U, Braide M (1985) Microcirculatory effects of white blood cells in shock. Prog Appl Microcirc Vol 7, Karger, Basel pp 43–50Google Scholar
  15. 15.
    Funk W, Intaglietta M (1983) Spontaneous arteriolar vasomotion. Prog Appl Microcirc Vol 3, Karger, Basel pp 66–82Google Scholar
  16. 16.
    Intaglietta M (1983) Wave-like characteristics of vasomotion. Prog Appl Microcirc Vol 3, Karger, Basel pp 83–94Google Scholar
  17. 17.
    Appelgren KL (1972) Perfusion and diffusion in shock. Acta Physiol Scand Suppl 378: 172Google Scholar
  18. 18.
    Granger DN, Dale A, Höllwarth M (1986) Role of oxygen radicals in ischemic bowel disorders. Pediatr Surg Int 1: 15–20CrossRefGoogle Scholar
  19. 19.
    Messmer K, Zeintl H, Kreimeier U, Schoenberg M (1986) Neue Trends in der Schockforschung. In: Eigler FW, Peiper H-J, Schildberg FW, Witte J, Zumtobel V (eds) Stand und Gegenstand chirurgischer Forschung. Springer, Berlin Heidelberg New York London Paris Tokyo pp 58–65Google Scholar
  20. 20.
    Dinarello CA (1984) Interleukin I. Ref Infect Dis 6: 51–95Google Scholar
  21. 21.
    Beisel WR (1986) Sepsis and metabolism. In: Little RA, Frayn KN (eds) The Scientific Basis for the Care of the Critically Ill. Manchester University Press pp 103–122Google Scholar
  22. 22.
    Yurt RW (1984) Intermediary metabolism including mediator activation. In: Shires GT (ed) Shock and Related Problems. Churchill Livingston, Edinburgh pp 111–124Google Scholar
  23. 23.
    Clowes jr CHA, George BC, Villee jr CA, Saravis CA (1983) Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. N Engl J Med 308: 545–552PubMedCrossRefGoogle Scholar
  24. 24.
    Loda M, Clowes jr GHA, Dinarello CA, Georges BC, Lane B, Richardson W (1984) Induction of hepatic protein synthesis by a peptide in blood plasma of patients with sepsis and trauma. Surgery 96: 204–213PubMedGoogle Scholar
  25. 25.
    Brock-Utne JG (1984) A breakthrough in the therapy of septic shock? South African Med J 65: 149Google Scholar
  26. 26.
    Arfors K-E, Lundberg C, Lindbom L, Lundberg K, Harlan M (1987) A monoclonal antibody to the membrane glycoprotein complex CDw18 (LFA) inhibits PMN accumulation and plasma leakage in vivo. Prog Appl Microcirc vol 11, Karger, Basel pp 270–275Google Scholar
  27. 27.
    Fleck A, Colley CM, Myers MA (1985) Liver export proteins and trauma. Brit Med Bull 41: 265–273PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • K. Messmer

There are no affiliations available

Personalised recommendations