Interstitial Hyperthermia

  • James R. Oleson
Part of the Medical Radiology book series (MEDRAD)

Abstract

A variety of techniques has been investigated for producing elevated temperatures in the whole body, in large body regions or in localized areas. Localized hyperthermia can be produced either with external energy sources in the case of superficial tumors, or with interstitial energy sources in a variety of sites. In this chapter we will only consider the technical and clinical aspects of interstitial approaches.

Keywords

Toxicity Catheter Microwave Lithium Cage 

Abbreviations

TER

Thermal Enchancement Ratio

TGF

Therapeutic Gain Factor

Rf

Radiofrequency

LCF

Localized Current Field

CR

Complete Response Rate

PR

Partial Response Rate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aristizabal SA, Oleson JR (1984) Combined interstitial irradiation and localized current field hyperthermia: Results and conclusions from clinical studies. Cancer Res (Suppl) 44:4757s-4760sGoogle Scholar
  2. Astrahan MA (1982) A localized current field hyperthermia system for use with 192 iridium interstitial implants. Med Phys 9: 419–424PubMedCrossRefGoogle Scholar
  3. Astrahan MA, George III FW (1980) A temperature regulating circuit for experimental localized current field hyperthermia systems. Med Phys 7: 362–364PubMedCrossRefGoogle Scholar
  4. Atkinson WJ, Brezovich IA, Chakraborty DP (1984) Useable frequencies in hyperthermia with termal seeds. IEEE Trans BME 31: 70–75CrossRefGoogle Scholar
  5. Bicher HI, Moore DW, Wolfstein RW (1984) A method for interstitial thermoradiotherapy. In: Overgaard J (ed) Hyperthermia Oncology 1984, Vol. 1, Taylor & Francis, London, pp 595–598Google Scholar
  6. Brezovich IA, Young JH (1981) Hyperthermia with implanted electrodes. Med Phys 8: 79–84PubMedCrossRefGoogle Scholar
  7. Brezovich IA, Atkinson WJ, Lilly MB (1984a) Local hyperthermia with interstitial techniques. Cancer Res (Suppl)44:4752s-4756sGoogle Scholar
  8. Brezovich IA, Atkinson WJ, Chakraborty DP (1984b) Temperature distributions in tumor models heated by self-regulating nickel-copper alloy thermoseeds. Med Phys 11:145–152CrossRefGoogle Scholar
  9. Burton C, Hill M, Walker AE (1971) The RF thermoseed — A thermally selfregulating implant for the production of brain lesions. IEEE Trans BME 18: 104–109CrossRefGoogle Scholar
  10. Cetas TC, Connor WG, Manning MR (1980) Monitoring of tissue temperature during hyperthermia therapy. NY Academy of sciences 335: 281–297CrossRefGoogle Scholar
  11. Cetas TC, Hevezi JM, Manning MR, Ozimeck EJ (1982) dosimetry of interstitial thermoradiotherapy. Natl Cancer Inst Monogr 61: 505–507Google Scholar
  12. Cetas TC, Roemer RB (1984) Status and future developments in the physical aspects of hyperthermia. CA Res (Suppl)44:4849s-4901sGoogle Scholar
  13. Corry PM, Barlogie B (1982) Clinical application of high frequency methods for local tumor hyperthermia. In: Nussbaum GH (ed) Physical Aspects of Hyperthermia. Amer Inst of Phys. NY, pp 307–328Google Scholar
  14. Cosset JM, Dutreix J, Dufour J, Janoray P, Damia E, Haie C, Clarke D (1984a) Combined interstitial hyperthermia and brachytherapy: Institute Gustave Roussy technique and preliminary results. Int J Radiat Oncol Biol Phys 10: 307–312CrossRefGoogle Scholar
  15. Cosset JM, Dutreix J, Gerbaulet A, Damia E (1984b) Combined interstitial hyperthermia and brachytherapy: The Institute Gustave Roussy Experience. In: Overgaard J (ed) Hyperthermic Oncology 1984, Vol. 1, Francis & Taylor, London, pp 587–590Google Scholar
  16. Coughlin CT, Douple EB, Strohbehn JW, Eaton Jr WL, Trembly BS, Wong TZ (1983) Interstitial hyperthermia in combination with brachytherapy. Radiology 148: 285–288PubMedGoogle Scholar
  17. Davies J, Simpson P (1979) Induction Heating Handbook. McGraw-Hill Book Co., LondonGoogle Scholar
  18. Dewhirst MW, Sim DA (1984) The utility of thermal dose as a predictor of tumor and normal tissue responses to combined radiation and hyperthermia. Ca Res (Suppl) 44:4772s-4780sGoogle Scholar
  19. Doss JD, McCabe CW (1976) A technique for localized heating in tissue: An adjunct to tumor therapy. Med In-strum 10: 16–21Google Scholar
  20. Emami B, Marks J, Perez C, Nussbaum G, Leybovich L (1984) Treatment of human tumors with interstitial irradiation and hyperthermia. In: Overgaard J (ed) Hyper-thermic Oncology 1984, Vol. 1. Francis & Taylor, London, pp 583–586Google Scholar
  21. Fessenden D, Lee ER, Samulski TV (1984) Direct temperature measurement. CA Res (Suppl) 44:4799s-4804sGoogle Scholar
  22. Forsyth K, Deshmukh R, DeYoung DW, Dewhirst MW, Cetas TC (1984) Recent clinical experience in pet animals with hyperthermic therapy in the head and neck region induced with inductively-heated ferromagnetic implants. In: Overgaard J (ed) Hyperthermic Oncology 1984, Vol. 1., Taylor & Francis, London, pp 599–602Google Scholar
  23. Joseph CO, Astrahan M, Lyssett J, Archambeau J, Forell B (1981) Interstitial hyperthermia and interstitial iridium 192 implantation: a technique and preliminary results. Int J Radiat Oncol Biol Phys 7: 827–833PubMedCrossRefGoogle Scholar
  24. King KWP, Trembly BS, Strohbehn JW (1983) The electromagnetic field of an insultated antenna in a conducting or dielectric medium. IEEE Trans MTT 31: 574–583CrossRefGoogle Scholar
  25. Li DJ, Luk KH, Jiang HB, Chou CK, Hwang GZ (1984) Design and thermometry of an intracavitary microwave applicator suitable for treatment of some vaginal and rectal cancers. Int J Radiat Oncol Biol Phys 10: 2155–2162PubMedCrossRefGoogle Scholar
  26. Lilly MB, Brezovich IA, Atkinson M, Chakraborty D, Durant JR, Ingram J, McElvein RB (1983) Hyperthermia with implanted electrodes: in vitro and in vivo correlations. Int J Radiat Oncol Biol Phys 9: 373–382PubMedGoogle Scholar
  27. Luderer AA, Borrelli NF, Panzarino JN, Mansfield GR, Hess DM, Brown JL, Barnett EH (1983) Glass-ceramicmediated magnetic-field-induced localized hyperthermia: response of a murine mammary carcinoma. Rad Res 94: 190–198CrossRefGoogle Scholar
  28. Lyons BE, Britt RH, Strohbehn JW (1984) Localized hyperthermia in the treatment of malignant brain tumors using an interstitial microwave array. IEEE Trans BME 31: 53–62CrossRefGoogle Scholar
  29. Manning MR, Cetas TC, Miller RC, Oleson JR, Conner WG, Gerner EW (1982a) Clinical hyperthermia: Results of a phase I trial employing hyperthermia alone or in combination with external beam or interstitial radiotherapy. Cancer 49: 205–216CrossRefGoogle Scholar
  30. Manning MR, Cetas TC, Gerner EW (1982b) Interstitial thermoradiotherapy. Natl Cancer Inst Monogr 61: 357–360Google Scholar
  31. Manning MR, Gerner EW (1983) Interstitial thermoradiotherapy. In: Storm FK (ed) Hyperthermia in Cancer Therapy. GK Hall Medical Publishers, Boston, pp 467–477Google Scholar
  32. Matloubieh AY, Roemer RB, Cetas TC (1984) Numerical simulation of magnetic induction heating of tumors with ferromagnetic seed implants. IEEE Trans BME 31: 227–234CrossRefGoogle Scholar
  33. Mendecki J, Friedenthal E, Botstein C, Paglione R, Sterzer R (1980) Microwave applicators for localized hyperthermia treatment of cancer of the prostate. Int J Radiat Oncol Biol Phys 6: 1583–1588PubMedGoogle Scholar
  34. Miller RC, Connor WG, Heusinkveld RS (1977) Prospects for hyperthermia in human cancer therapy and hyper-thermic effects in man and spontaneous animal tumors. Radiology 123: 489–495PubMedGoogle Scholar
  35. Nussbaum GH (1984) Quality assessment and assurance in clinical hyperthermia: requirements and procedures. CA Res (suppl) 44:4811s-4817sGoogle Scholar
  36. Oleson JR, Cetas TC (1982) Clinical hyperthermia with rf currents. In: Nussbaum GH (ed) Physical Aspects of Hyperthermia. American Inst of Phys, Inc., NY, pp 280–306Google Scholar
  37. Oleson JR, Manning MR, Sim DA, Heusinkveld RS, Aristizabal SA, Cetas TC, Hevezi JM, Connor WG (1984a) A review of the University of Arizona human clinical hyperthermia experience. Front Radiat Ther Oncol 18: 136–143Google Scholar
  38. Oleson JR, Sim DA, Manning MR (1984b) Analysis of prognostic variables in hyperthermia treatment of 161 patients. Int J Radiat Oncol Biol Phys 10:2231–2239CrossRefGoogle Scholar
  39. Rand RW, Snow HD, Brown WJ (1982) Thermomagnetic surgery for cancer. J Surg Res 33: 177–183PubMedCrossRefGoogle Scholar
  40. Roemer RB, Cetas TC (1984) Applications of bioheat transfer simulations in hyperthermia. Ca Res (Suppl) 44:4788s-4797sGoogle Scholar
  41. Salcman M, Samaras GM (1983) Interstitial microwave hyperthermia for brain tumors: Results of a phase-I clinical trial. J Neuro-Oncol 1: 225–236CrossRefGoogle Scholar
  42. Samaras GM (1984) Intracranial microwave hyperthermia: Heat induction and temperature control. IEEE Trans BME 31: 63–69CrossRefGoogle Scholar
  43. Sim DA, Oleson JR, Grochowski RJ (1984a) An update of the University of Arizona human clinical hyperthermic experience including estimates of therapeutic advantage. In: Overgaard J (ed) Hyperthermia Oncology, Vol. 1. Francis & Taylor, London, pp 359–362Google Scholar
  44. Sim DA, Dewhirst MW, Oleson JR, Grochowski RJ (1984b) Estimating the therapeutic advantage of adequate heat. In: Overgaard J (ed) Hyperthermic Oncology 1984, Vol. 1. Francis & Taylor, London, pp 359–362Google Scholar
  45. Stauffer PR, Cetas TC, Jones RC (1982) System for producing localized hyperthermia in tumors through magnetic induction heating of ferromagnetic implants. Natl Cancer Inst Monogr 61: 483–487Google Scholar
  46. Stauffer PR, Cetas TC, Fletcher AM, DeYoung DW, Dewhirst MW, Oleson JR, Roemer RB (1984a) Observations on the use of ferromagnetic implants for inducing localized hyperthermia. IEEE Trans BME 31: 76–90CrossRefGoogle Scholar
  47. Stauffer PR, Cetas TC, Jones RC (1984b) Magnetic induction heating of ferromagnetic implants for inducing localized hyperthermia in deep-seated tumors. IEEE Trans BME 31: 235–251CrossRefGoogle Scholar
  48. Strohbehn JW, Bowers ED, Walsh JE, Douple EB (1979) An invasive microwave antenna for locally induced hyperthermia for cancer therapy. J Microwave Power 14: 339–350Google Scholar
  49. Strohbehn JW, Trembly B, Douple EB (1982a) Blood flow effects of the temperature distributions from an invasive microwave antenna array used in cancer therapy. IEEE BME 29:649–661CrossRefGoogle Scholar
  50. Strohbehn JW, Trembly BS, Douple EB, De Sieyes DC (1982b) Evaluation of an invasive microwave antenna system for heating deep-seated tumors. Natl Cancer Inst Monogr 61: 489–491Google Scholar
  51. Strohbehn JW (1983) Temperature distributions from interstitial RF electrode hyperthermia systems: Theoretical predictions. Int J Radiat Oncol Biol Phys 9: 1655–1667PubMedGoogle Scholar
  52. Strohbehn JW, Roemer RB (1984) A survey of computer simulations of hyperthermia treatments. IEEE-Trans BME 31: 136–149CrossRefGoogle Scholar
  53. Taylor LS (1980) Implantable radiators for cancer therapy by microwave hyperthermia. Proc IEEE 68: 142–149CrossRefGoogle Scholar
  54. Taylor LS, Samaras GM, Cheung AY, Salcman M, Scott RM (1982) Implantable microwave radiators for clinical hyperthermia. Radio Sci 17: 1255–1335CrossRefGoogle Scholar
  55. Trembly BS, Strohbehn JW, De Sieyes DC, Douple EB (1982) Hyperthermia induction by an array of invasive microwave antennas. Natl Cancer Inst Monogr 61: 497–499Google Scholar
  56. Vora N, Forell B, Joseph C, Lipsett V, Archambeau JO (1982) Interstitial implant with interstitial hyperthermia. Cancer 50: 2518–2523PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • James R. Oleson
    • 1
  1. 1.Duke University Medical CenterDurhamUSA

Personalised recommendations