Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Clinical and experimental evidence suggests that, as an overall strategy, radiotherapy for most cancers should be given using the smallest practical dose per fraction and the shortest overall treatment duration. Any attempt to modify standard fractionation patterns to use smaller dose fractions and or a shorter overall time will require more than 5 fractions per week. However, the fact that both strategies result in 2 or more treatments on some or every treatment day should not obscure the different biological reasons for adopting them. Shortening the overall treatment time (accelerated fractionation) aims to minimize the effect of regeneration of tumor clonogens during treatment while the use of small dose fractions (hyperfractionation) is aimed at exploiting differences in the radio-biology of the tumor and late responding normal tissues. Hyperfractionation is the use of dose fractions smaller than standard. Accelerated fractionation is a shortening of the overall duration of a fractionated dose regimen. (Hyperfractionated accelerated treatment involves both a reduced dose per fraction and a shorter overall time.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ang KK, van der Kogel AJ, van Dam J, van der Schueren E (1984) The kinetics of repair of sublethal damage in the rat cervical spinal cord during fractionated irradiation. Radiother Oncol 1: 247–253

    Article  PubMed  CAS  Google Scholar 

  • Ang KK, Xu F-X, Vanuytsel L, van der Schueren E (1985) Repopulation kinetics in irradiated mouse lip mucosa: The relative importance of treatment protraction and time distribution of irradiations. Radiat Res 101: 162–169

    Article  PubMed  CAS  Google Scholar 

  • Arcangeli G, Mauro F, Morelli D, Nervi C (1979) Multiple daily fractionation in radiotherapy: Biological rationale and preliminary clinical experiences. Europ J Cancer 15: 1077–1083

    Article  CAS  Google Scholar 

  • Backstrom A, Jakobsson DA, Littbrand B, Wersall J (1973) Fractionation scheme with low individual doses in irradiation of carcinomas of the mouth. Acta Radiol Ther Phys Biol 12: 401–406

    PubMed  CAS  Google Scholar 

  • Barendsen GW (1982) Dose fractionation, dose rate and isoeffect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8: 1981–1997

    Article  PubMed  CAS  Google Scholar 

  • Cox JD (1985) Large dose fractionation (hypofractionation). Cancer 55: 2105–2111

    Article  PubMed  CAS  Google Scholar 

  • Douglas B, Worth A (1982) Superfractionation in glioblastoma multiforme: Results of a phase II study. Int J Radiat Oncol Biol Phys 8: 1787–1794

    Article  PubMed  CAS  Google Scholar 

  • Edsmyr F, Andersson L, Esposti PL, Littbrand B, Nilsson B (1985) Irradiation therapy with multiple small fractions per day in urinary bladder cancer. Radiother Oncol 4: 197–203

    Article  PubMed  CAS  Google Scholar 

  • Ellis F (1969) Dose, time and fractionation: A clinical hypothesis. Clin Radiol 20: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Horiot JC, Nabid A, Chapman G (1982) Clinical experience with multiple daily fractionation in the radiotherapy of head and neck carcinoma. Cancer Bulletin 34: 230–233

    Google Scholar 

  • Horiot JC, van den Bogaert W, de Pauw M, van Glabbeke M, Gonzales DG, van der Schueren E (1985) EORTC prospective trials of altered fractionation using multiple fractions per day (MFD). Proceedings 16th Int. Congress of Radiology, Honolulu, Hawaii, 1985, p 95

    Google Scholar 

  • Horiot JC, Chaplain G, van der Schueren E et al. (1985) European Organization for Research and Treatment on Cancer (EORTC) Cooperative Group of Radiotherapy: Protocol 22581 “A phase III study of accelerated fractionation in the radiotherapy of advanced head and neck carcinoma”

    Google Scholar 

  • Jampolis S, Pepard G, Horiot JC, Bolla M, LeDorze C (1977) Preliminary results using twice a day fractionation in the radiotherapeutic management of advanced cancers of the head and neck. Am J Roentgenol 129: 1091–1093

    CAS  Google Scholar 

  • Littbrand B, Edsmyr F, Revesz L (1975) A low dose fractionation scheme for the radiotherapy of the carcinoma of the bladder. Experimental and preliminary results. Bull Cancer 62: 241

    PubMed  CAS  Google Scholar 

  • Loeffler RK (1983) Improved tolerance with two radiation fractions per day for treatment of abdominal and pelvic malignancies. Am J Clin Oncol (CCT) 6: 619–627

    CAS  Google Scholar 

  • Maciejewski B, Taylor JMG, Withers HR (1986 a) Alpha beta value and the importance of size of dose per fraction for late complications in the supraglottic larynx. Radiother Oncol 4: 323–326

    Google Scholar 

  • Maciejewski B, Withers HR, Taylor JMG, Hliniak A (1986b) Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx. Part 1. Tumor dose-response and repopulation. Int J Radiat Oncol Biol Phys (submitted)

    Google Scholar 

  • Mason KA, Withers HR (1977) RBE of neutrons generated by 50 MeV deuterons on beryllium for control of artificial pulmonary metastases of a mouse fibrosarcoma. Br J Radiol 50: 652–657

    Article  PubMed  CAS  Google Scholar 

  • Medini E, Rao Y, Kim T, James TK, Levitt SH (1980) Radiation therapy for advanced head and neck squamous cell carcinoma using twice-a-day fractionation. Radiology 134: 531–532

    PubMed  CAS  Google Scholar 

  • Meoz RT, Fletcher GH, Peters LJ, Barkley HT, Thames HD (1984) Twice-daily fractionation schemes for advanced head and neck cancer. Int J Radiat Oncol Biol Phys 10: 831–836

    Article  PubMed  CAS  Google Scholar 

  • Parsons JT, Cassisi NJ, Million RR (1984) Results of twicea-day irradiation of squamous cell carcinomas of the head and neck. Int J Radiat Oncol Biol Phys 10: 2041–2051

    Article  PubMed  CAS  Google Scholar 

  • Parsons JT, Cassisi NJ, Million RR (1984) Results of twicea-day irradiation of squamous cell carcinomas of the head and neck. Int J Radiat Oncol Biol Phys 10: 2041–2051

    Article  PubMed  CAS  Google Scholar 

  • Parsons JT, Cassisi NJ, Million RR (1984) Results of twicea-day irradiation of squamous cell carcinomas of the head and neck. Int J Radiat Oncol Biol Phys 10: 2041–2051

    Article  PubMed  CAS  Google Scholar 

  • Peters LJ, Ang KK (1987) Accelerated fractionation. In: Withers HR, Peters U (eds) Innovations in Radiation Oncology. Springer-Verlag, Heidelberg

    Google Scholar 

  • Regaud C (1929) Radium therapy of cancer at the Radium Institute of Paris. Technique, biological principles and results. Am J Roentgenol Rad Therapy 21: 1–24

    Google Scholar 

  • Revesz L, Littbrand B, Midander J, Scott OCA (1975) Oxygen effects in the shoulder region of cell survival curves. In: Alper T (ed) Proceedings 6th LH Gray Conference. John Wiley and Sons Ltd, London New York, p 141

    Google Scholar 

  • Schwarz G (1914) Dauerbestrahlung mit täglichen kleinen Dosen. Münchener Med Wochenschr 61: 1733–1735

    Google Scholar 

  • Shukovsky L, Fletcher GH, Montague ED, Withers HR (1976) Experience with twice-daily fractionation in clinical radiotherapy. Am J Roentgenol 126: 155–162

    CAS  Google Scholar 

  • Singh K (1978) Two regimes with the same TDF but differing morbidity used in the treatment of stage III carcinoma of the cervix. Br J Radiol 51: 357–362

    Article  PubMed  CAS  Google Scholar 

  • Thames HD, Withers HR, Peters U, Fletcher GH (1982) Changes in early and late radiation responses with altered dose fractionation: Implications for dose-survival relationships. Int J Radiat Oncol Biol Phys 8: 219–226

    Google Scholar 

  • Trott K, Kummermehr J (1985) What is known about tumor proliferation rates to choose between accelerated fractionation or hyperfractionation? Radiother Oncol 3: 1–9

    Article  PubMed  CAS  Google Scholar 

  • van der Schueren E, van den Bogaret W, Ang KK (1983) Radiotherapy with multiple fractions per day. In: Steel GG, Adams GE, Peckham MJ (eds) The Biological Basis of Radiotherapy. Elsevier Science Publishers, Amsterdam, p 195

    Google Scholar 

  • Vegesna V, Withers HR, Thames HD (1985) Multifraction radiation response of mouse lung. Int J Radiat Biol 47: 413–422

    CAS  Google Scholar 

  • Wang CC, Blitzer PH, Suit H (1985) Twice-a-day radiation therapy for cancer of the head and neck. Cancer 55: 2100–2104

    Article  PubMed  CAS  Google Scholar 

  • Wang CC, Suit HD, Blitzer PH (1986) Twice-a-day radiation therapy for supraglottic carcinoma. Int J Radiat On-col Biol Phys 12: 3–7

    Article  CAS  Google Scholar 

  • Wang CC (1987) Accelerated fractionation. In: Withers HR, Peters U (eds) Innovations in Radiation Oncology. Springer-Verlag, Heidelberg

    Google Scholar 

  • Withers HR (1972) Cell renewal concepts and the radiation response. In: Vaeth JM (ed) Frontiers of Radiation Therapy and Oncology, vol 6. Karger, Basel, p 93

    Google Scholar 

  • Withers HR (1975) Cell cycle redistribution as a factor in multifraction irradiation. Radiology 114: 199–202

    PubMed  CAS  Google Scholar 

  • Withers HR, Hunter N, Barkley HT, Reid BO (1974) Radiation survival and regeneration characteristics of spermatogenic stem cells of mouse testis. Radiat Res 57: 88–103

    Article  PubMed  CAS  Google Scholar 

  • Withers HR, Thames HD Jr, Peters U (1982a) Differences in the fractionation response of acute and late responding tissues, In: Karcher KH, Kogelnik HD, Reinartz G (eds) Progress in Radio-Oncology II. Raven Press, New York, p 287

    Google Scholar 

  • Withers HR, Thames HD Jr, Peters LJ (1982b) Biological bases for high RBE values for late effects of neutron irradiation. Int J Radiat Oncol Biol Phys 8: 2071–2076

    Article  PubMed  CAS  Google Scholar 

  • Withers HR, Thames HD, Peters LJ, Fletcher GH (1983a) Normal tissue radioresistance in clinical radiotherapy. In: Fletcher GH, Nervi C, Withers HR (eds) Biological Bases and Clinical Implications of Tumor Radioresistance. Masson, New York, p 139

    Google Scholar 

  • Withers HR, Thames HD, Peters U (1983 b) A new isoeffect curve for change in dose per fraction. Radiother Oncol 2: 187–192

    Google Scholar 

  • Withers HR (1985) Biologic basis for altered fractionation schemes. Cancer 55: 2086–2095

    Article  PubMed  CAS  Google Scholar 

  • Withers HR, Mason KA, Thanes HD (1986) Late radiation response of kidney assayed by tubule cell survival. Br J Radiol 59: 587–595

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Withers, H.R., Horiot, JC. (1988). Hyperfractionation. In: Withers, H.R., Peters, L.J. (eds) Innovations in Radiation Oncology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83101-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83101-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83103-4

  • Online ISBN: 978-3-642-83101-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics