Sepsis pp 298-306 | Cite as

Clinical Relevance of Endotoxin and Eicosanoids in Severe Sepsis

  • W. Oettinger
  • D. Berger
  • H. G. Beger

Abstract

Severe sepsis is understood as a syndrome leading to menacing impairment of vital organ functions secondary to infection. Its most pronounced form is septic shock, which is presently defined by hemodynamic and objective functional data from various organ systems. Severe sepsis results primarily from the invasion of mostly gram-negative germs. Its biological effector is identified as endotoxin, in particular, its toxic component lipid A [1], both located in the bacterial wall. Most threatening, therefore, are all contaminations of large body areas or dense bacterial growth of endotoxincontaining germs such as Escherichia coli, Klebsiella, Pseudomonas, Proteus, and Pyocyaneus.

Keywords

Permeability Pneumonia Pancreatitis Stratification Prostaglandin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luderitz O, Gacanos C, Lehmann J, Nurminen M, Rietschel ET, Rosenfelder SM, Westphal O (1973) Lipid A. J Infect Dis 18: 17CrossRefGoogle Scholar
  2. 2.
    Kilpatrick-Smith L, Erecinska M, Silver IA (1981) Early cellular responses in vitro to endotoxin administration. Circ Shock 8: 585Google Scholar
  3. 3.
    Kux M, Coalson JJ, Massion WH, Günter CA (1972) Pulmonary effects of E. coli endotoxin: role of leukocytes and plateles. Ann Surg 175: 1–27CrossRefGoogle Scholar
  4. 4.
    Lerner RG, Goldstern R, Cummings G (1977) Endotoxin induced disseminated intravascular clotting: evidence that it is mediated by neutrophil production of tissue factor. Thromb Res 11: 272Google Scholar
  5. 5.
    Havemann K (1978) Neutral proteases of human polymorphonuclear leucocytes. Urban, Schwarzenberg, BaltimoreGoogle Scholar
  6. 6.
    Messmer K (1987) Microcirculatory changes in endotoxinemia and septic shock. In: Vincent JL, Thijs LG (eds) Update in intensive care and emergency medicine. Septic shock. Springer, Berlin Heidelberg New York, pp 35–42Google Scholar
  7. 7.
    Hyman AL, Spannhake EW, Kadowitz PJ (1978) Prostaglandins and the lung, state of the art. Am Rev Respir Dis 117: 111–136PubMedGoogle Scholar
  8. 8.
    Piper P, Vane J, Wyllie J (1970) Inactivation of prostaglandins by the lung. Nature 255: 600–604CrossRefGoogle Scholar
  9. 9.
    Ball HA, Cook JA, Wise WC, Halushka PV (1986) Role of thromboxane, prostaglandins and leukotrienes in endotoxic and septic shock. Intensive Care Med 12: 116–126PubMedCrossRefGoogle Scholar
  10. 10.
    Oettinger W (1987) Role of prostaglandins and thromboxane. In: Vincent JL, Thijs LG (eds) Update in intensive care and emergency medicine. Septic shock. Springer, Berlin Heidelberg New York, pp 89–107Google Scholar
  11. 11.
    Halushka PV, Reines HD, Barrow SE, et al. (1985) Elevated plasma 6-keto-prostaglandin Fla in patients in septic shock. Crit Care Med 13: 451–453PubMedCrossRefGoogle Scholar
  12. 12.
    Reines HD, Halushka PV, Cook JA, Wise WC, Rambo W (1982) Plasma thromboxane concentration are raised in patients dying with septic shock. Lancet [2]: 174–175PubMedCrossRefGoogle Scholar
  13. 13.
    Fink PC, Grunert JU (1984) Endotoxemia in intensive care patients. A longitudinal study with the limulus amebocyte lysate test. Klin Wochenschr 62: 586CrossRefGoogle Scholar
  14. 14.
    Beger HG, Gögler H, Kraas E, Bittner R (1981) Endotoxin bei bakterieller Peritonitis. Chirurg 52: 81–88PubMedGoogle Scholar
  15. 15.
    Grundmann R, Ingenhoff E (1986) Postoperative Bestimmung des Endotoxinverlaufs. Dtsch Med Wochenschr 111: 457–462PubMedCrossRefGoogle Scholar
  16. 16.
    McCartney AC, Banks JG, Clements GB, Sleigh JD, Tehrani M, Ledingham IMCA (1983) Endotoxaemia in septic shock: clinical and post mortem correlations. Intensive Care Med 9: 117–122PubMedCrossRefGoogle Scholar
  17. 17.
    Oettinger W, Berger D, Beger HG (1987) The clinical significance of prostaglandins and thromboxane as mediators of septic shock. Klin Wochenschr 65: 61–68PubMedCrossRefGoogle Scholar
  18. 18.
    Oettinger WKE, Walter GO, Jensen UM, Beyer A, Peskar BA (1983) Endogenous prostaglandin Fla in the hyperdynamic state of severe sepsis in man. Br J Surg 70: 237–239PubMedCrossRefGoogle Scholar
  19. 19.
    Oettinger W, Beyer A, Jensen U, Zumtobel V (1981) Interrelation of endogenous prostaglandins-prostaglandin F2α, prostacyclin, thromboxane with pulmonary and systemic vascular resistance in human septic shock. Crit Care Med 9: 213CrossRefGoogle Scholar
  20. 20.
    Frölich JL, Ogletree M, Peskar BA, Brigham KL (1980) Pulmonary hypertension correlated to pulmonary thromboxane synthesis. In: Samuellson B, Ramwell PW, Paoletti R (eds) Advances in prostaglandins and thromboxane research. Raven, New York, pp 745–750Google Scholar
  21. 21.
    Oettinger W, Peskar BA, Beger HG (1987) Profiles of endogenous prostaglandin F, thromboxane A2 and prostacyclin with regard to cardiovascular and organ functions in early septic shock in man. Eur Surg Res 19: 65–77PubMedCrossRefGoogle Scholar
  22. 22.
    Oettinger W, Pfleiderer A, Heil K, Seifert J, Brendel W (1982) Evaluation of endogenous and exogenous prostacylin (PGI2) in a porcine endotoxic shock model. Eur Surg Res 14: 112Google Scholar
  23. 23.
    Lefer AM, Tabas J, Smith III EF (1980) Salutary effects of prostacyclin in endotoxin shock. Pharmacology 21: 206–211PubMedCrossRefGoogle Scholar
  24. 24.
    Ogletree ML, Brigham KL (1979) Indomethacin augments endotoxin induced increased lung vascular permeability in sheep. Am Rev Respir Dis 119: 383–389Google Scholar
  25. 25.
    McCarthy J, Torres V, Romero J, Wochos D, Velosa J (1982) Acute intrinsic renal failure induced by indomethacin. Mayo Clin Proc 57: 289–294PubMedGoogle Scholar
  26. 26.
    Reines HD, Halushka PV, Olanoff LS, Hunt PS (1985) Dazoxiben in human sepsis and adult respiratory distress syndrome. Clin Pharmacol Ther 37: 390–395Google Scholar
  27. 27.
    Bihari D, Smithies M, Gimson A, Tinker J (1987) The effects of vasodilation with prostacyclin on oxygen delivery and uptake in critically ill patients. N Engl J Med 317: 397–402PubMedCrossRefGoogle Scholar
  28. 28.
    Arfors KE, Lundberg C, Lindbom L, Lundberg K, Harlan M (1987) A monoclonal antibody to the membrane glycoprotein complex CDw18 (LFA) inhibits PMN accumulation and plasma leakage in vivo. In: Messmer K, Hammersen F (eds) Progress in applied microcirculation, vol 11. Karger, Basel, pp 270–275Google Scholar
  29. 29.
    Baumgartner JD, Glauser MP, McCutchan JA, et al. (1985) Prevention of gram-negative shock and death in surgical patients by antibody to endotoxin core glycolipid. Lancet [2]: 59–63PubMedCrossRefGoogle Scholar
  30. 30.
    Duswald KH (1983) Zur Pathobiochemie der Leukozytenelastase and ausgewählter Plasmaproteine bei Sepsis nach abdominal-chirurgischen Eingriffen. GIT-Verlag, DarmstadtGoogle Scholar
  31. 31.
    Elfin RJ, Robinson A, Levine AS, Wolff SM (1975) Lack of clinical usefulness of the limulus test in the diagnosis of endotoxemia. N Engl J Med 293: 521–524CrossRefGoogle Scholar
  32. 32.
    Berger D, Beger HG (1986) Fehlermöglichkeit des Limulus-Amoebozyten-Lysat-Testes bei der Endotoxinbestimmung im Serum. Lab Med 10: 95–96Google Scholar
  33. 33.
    Berger D, Beger HG (1987) Evidence for endotoxin binding capacity of human Gc-globulin and transferrin. Clin Chim Acta 163: 289–299PubMedCrossRefGoogle Scholar
  34. 34.
    Nakano J, Prancan AV (1973) Metabolic degradation of prostaglandin E1 in the lung and kidney of rats in endotoxin shock. Proc Soc Exp Biol Med 144: 506PubMedGoogle Scholar
  35. 35.
    Blackwell GJ, Flower RJ, Hermann AG (1976) Effect of endotoxin on 15-hydroxyprostaglandin-dehydrogenase in the rabbit jejunum and lung. Arch Int Pharmacodyn Ther 220: 325PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • W. Oettinger
  • D. Berger
  • H. G. Beger

There are no affiliations available

Personalised recommendations