Poly(ADP-Ribose) in Inherited Human Diseases and Experimental Disease Models

  • Felix R. Althaus
  • Christoph Richter
Part of the Molecular Biology Biochemistry and Biophysics book series (MOLECULAR, volume 37)


The study of molecular defects in inherited animal and human diseases may provide very valuable insights into the physiological functions of macromolecules. Unfortunately, no disease model is known so far, which would clearly point to a vital role of poly(ADP-ribose) biosynthesis in the normal function and survival of mammals. Nevertheless, abnormalities of poly(ADP-ribose) metabolism have been noted in inherited human diseases, and have also been investigated in experimental disease models. The etiological role of altered poly(ADP-ribose) metabolism in any of the examples studied is far from being understood. A notable exception to this may be the recent discovery by Williams and associates (Williams et al. 1984 a, b) of a hereditary human disease which is associated with a defect in poly(ADP-ribose) catabolism. Another clue to a better understanding of the physiological role of poly(ADP-ribose) may be derived from the demonstration of naturally occurring antibodies against poly(ADP-ribose) in the serum of patients with systemic lupus erythematosus (e.g., Kanai et al. 1977). A third type of evidence, linking poly-ADP-ribosylation to neoplastic diseases, may be derived from studies which involved the use of ADP-ribosylation inhibitors in experimentally induced neoplasias in vitro and in vivo (e.g., Kun et al. 1983; Kun and Bauer 1985; Borek et al. 1984b).


Systemic Lupus Erythematosus Xeroderma Pigmentosum Islet Cell Tumor Lysosomal Storage Disease Hamster Embryo Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altmann H (1983) Poly(ADP-ribose) Synthese und Regulationsstörungen bei Erkrankungen. Wiener Klin Wochenschr 24:861–864 (in German)Google Scholar
  2. Altmann H, Doljes I (1982) Poly(ADP-ribose) synthesis, chromatin structure and DNA repair in cells of patients with different diseases. Progr Mutat Res 4:167–174Google Scholar
  3. Berger NA, Sikorski GW (1981) Poly(adenosine diphosphoribose) synthesis in ultraviolet-irradiated xeroderma pigmentosum cells reconstituted with Micrococcus luteus UV endonu-clease. Biochemistry 20:3610–3614PubMedCrossRefGoogle Scholar
  4. Berger NA, Sikorski GW, Petzold SJ, Kurohara KK (1980) Defective poly(adenosine diphosphoribose) synthesis in xeroderma pigmentosum cells. Biochemistry 19:289–293PubMedCrossRefGoogle Scholar
  5. Berger NA, Berger SJ, Catino DM (1982) Abnormal NAD levels in cells from patients with Fan-coni’s anaemia. Nature (London) 299:271–273CrossRefGoogle Scholar
  6. Bhattacharyya N, Bhattacharjee SB (1983) Suppression of N-methyl-N′-nitro-N-nitrosogua-nidine-induced mutation in Chinese hamster V79 cells by inhibition of poly(ADP-ribose)-polymerase activity. Mutat Res 121:287–292PubMedCrossRefGoogle Scholar
  7. Borek C, Cleaver JE (1986) Antagonistic action of a tumor promoter and a poly(adenosine diphosphoribose) synthesis inhibitor in radiation-induced transformation in vitro. Biochem Biophys Res Commun 134:1334–1341PubMedCrossRefGoogle Scholar
  8. Borek C, Ong A, Morgan WF, Cleaver JE (1984 a) Inhibition of x-ray-and ultraviolet light-induced transformation in vitro by modifiers of poly(ADP-ribose) synthesis. Radiat Res 99:219–227PubMedCrossRefGoogle Scholar
  9. Borek C, Morgan WF, Ong A, Cleaver JE (1984 b) Inhibition of malignant transformation in vitro by inhibitors of poly(ADP-ribose) synthesis. Proc Natl Acad Sci USA 81:243–247PubMedCrossRefGoogle Scholar
  10. Borek C, Ong A, Cleaver JE (1984 c) Methylating agents and ethylating agents have different requirements for poly(ADP-ribose) synthesis during malignant transformation. Carcino-genesis 5:1573–1576CrossRefGoogle Scholar
  11. Borek C, Ong A, Guo XC, Cleaver JE (1985) A role for poly(ADP-ribose) in radiogenic and chemically-induced malignant transformation and mutagenesis. In: Althaus FR, Hilz H, Shall S (eds) ADP-ribosylation of proteins. Springer, Berlin Heidelberg New York Tokyo, pp 464–470Google Scholar
  12. Burkle A, Hausen H zur (1985) Role of poly(ADP-ribose) in carcinogen-induced DNA amplification. Abstr EMBO Worksh Parvoviruses, Grangeneuve, Switzerland, September 16–19Google Scholar
  13. Caldwell DS (1981) Musculoskeletal syndromes associated with malignancy. In: Kelley WN, Harris ED, Shun R, Sledge CB (eds) Textbook of rheumatology. Saunders, Philadelphia, pp 1658–1671Google Scholar
  14. Cerutti PA (1985) Prooxidant states and tumor promotion. Science 227:375–381PubMedCrossRefGoogle Scholar
  15. Clayton AL, Bernstein RM, Tavassoli M, Shall S, Bunn C, Hughes GRV, Chantier SM (1984) Measurement of antibody to poly(adenosine diphosphate ribose): its diagnostic value in systemic lupus erythematosus. Clin Exp Immunol 56:263–271PubMedGoogle Scholar
  16. Dubois EL (1974) The clinical picture of systemic lupus erythematosus. In: Dubois EL (ed) Lupus erythematosus. S Cal Univ Press, Los Angeles, pp 380–444Google Scholar
  17. Edwards MJ, Taylor AMR (1980) Unusual levels of (ADP-ribose)n and DNA synthesis in ataxia teleangiectasia cells following gamma ray irradiation. Nature (London) 287:745–747CrossRefGoogle Scholar
  18. Friedberg EC (1985) DNA repair. Freeman, New York, pp 506–525Google Scholar
  19. Heflich RH, Morris SM, White GL, Beland FA (1985) The differential effect of benzamide upon the toxicity and mutations produced in Chinese hamster ovary cells by N-methyl ni-trosourea, N-ethyl nitrosourea and N-hydroxy-2-aminofluorene. Mutat Res 142:203–207PubMedCrossRefGoogle Scholar
  20. Hers HG (1965) Inborn lysosomal diseases. Gastroenterology 48:625–633PubMedGoogle Scholar
  21. Jacobson EL, Gupta G, Williams JC, Jacobson MK (1986) Poly(ADP-ribose) metabolism is altered in cells from a patient with glutamyl ribose-5-storage disease. Fed Proc 45:1590 (Abstr)Google Scholar
  22. Kanai Y, Fujiwara M (1985 a) Naturally occurring antibodies to poly(ADP-ribose) in autoimmune MRL/Mp-Ipr/Ipr mice. Clin Exp Immunol 59:132–138PubMedGoogle Scholar
  23. Kanai Y, Tanuma S (1985) Immunofluorescent staining of poly(ADP-ribose) in situ in acetone-fixed HeLa cells: its usefulness for clinical and basic sciences. In: Althaus FR, Hilz H, Shall S (eds) ADP-ribosylation of proteins. Springer, Berlin Heidelberg New York Tokyo, pp 496–501Google Scholar
  24. Kanai Y, Kawamini Y, Miwa M, Matsushima T, Sugimura T, Moroi Y, Yokohari R (1977) Naturally occurring antibodies to poly(ADP-ribose) in patients with systemic lupus erythematosus. Nature (London) 265:175–177CrossRefGoogle Scholar
  25. Kanai Y, Moroi Y, Ykohari R, Goto S (1983) Profiles of antibodies to poly(ADP-ribose), left-handed Z-DNA, and other nuclear constituents in systemic lupus erythematosus and progressive systemic sclerosis. In: Miwa M, Hayaishi O, Shall S, Smulson M, Sugimura T (eds) ADP-ribosylation, DNA repair and cancer. Jpn Soc Press, Tokyo, pp 93–100Google Scholar
  26. Kanai Y, Akatsuka T, Kubota T, Goto S, Stollar BD (1985) MRL/Mp-Ipr/Ipr mouse derived monoclonal antibodies that recognize determinants shared by poly(ADP-ribose), single stranded DNA and left handed Z-DNA. Clin Exp Immunol 59:139–145PubMedGoogle Scholar
  27. Kasid UN, Stefanik DF, Lubet RA, Dritschilo A, Smulson ME (1986) Relationship between DNA strand breaks and inhibition of poly(ADP-ribosylation): enhancement of carcinogen-induced transformation. Carcinogenesis 7:327–330PubMedCrossRefGoogle Scholar
  28. Klocker H, Auer B, Hirsch-Kauffmann M, Altmann H, Burtscher HJ, Schweiger M (1983) DNA repair dependent NAD metabolism is impaired in cells from patients with Fanconi’s anemia. EMBO J 2:303–307PubMedGoogle Scholar
  29. Konishi Y, Takahashi S, Nakae D, Uchida K, Emi Y, Shiraiwa K, Ohnishi T (1985) Involvement of poly(ADP-ribosylation)reactions in liver carcinogenesis of diethylnitrosamine in rats. In: Althaus FR, Hilz H, Shall S (eds) ADP-ribosylation of proteins. Springer, Berlin Heidelberg New York Tokyo, pp 489–495Google Scholar
  30. Kun E, Bauer PI (1985) Specific binding of benzamide to DNA: possible correlation to antitrans-forming activity. In: Althaus FR, Hilz H, Shall S (eds) ADP-ribosylation of proteins. Springer, Berlin Heidelberg New York Tokyo, pp 475–479Google Scholar
  31. Kun E, Kirsten E, Milo GE, Kurian P, Kumari HL (1983) Cell cycle-dependent intervention by benzamide of carcinogen-induced neoplastic transformation and in vitro poly(ADP-ribosy-l)ation of nuclear proteins in human fibroblasts. Proc Natl Acad Sci USA 80:7219–7223PubMedCrossRefGoogle Scholar
  32. Lubet RA, McCarvill JT, Putman DL, Schwartz JL, Schechtman LM (1984) Effect of 3-amino-benzamide on the induction of toxicity and transformation by ethyl methanesulfonate and methylcholanthrence in BALB/3T3 cells. Carcinogenesis 5:459–462PubMedCrossRefGoogle Scholar
  33. Lubet RA, McCarvill JT, Schwartz JL (1985) Effects of 3-aminobenzamide on the induction of toxicity and transformation by various chemicals. In: Althaus FR, Hilz H, Shall S (eds) ADP-ribosylation of proteins. Springer, Berlin Heidelberg New York Tokyo, pp 471–474Google Scholar
  34. Lubet RA, McCarvill JT, Schwartz JL, Putman DL, Schechtman LM (1986) Effects of 3-aminobenzamide on the induction of morphologic transformation by diverse compounds in Balb/3T3 cells in vitro. Carcinogenesis 7:71–75PubMedCrossRefGoogle Scholar
  35. McCurry LS, Jacobson MK (1981) Poly(ADP-ribose) synthesis following DNA damage in cells heterozygous or homozygous for the xeroderma pigmentosum genotype. J Biol Chem 256:551–553PubMedGoogle Scholar
  36. Miwa M, Ishikawa T, Kondo T, Takayama S, Sugimura T (1985) Enhancement by m-aminoben-zamide of methylazoxymethanol acetate-induced hepatoma of the small fish “Medaka” (Oryzias latipes). In: Althaus FR, Hilz H, Shall S (eds) ADP-ribosylation of proteins. Springer, Berlin Heidelberg New York Tokyo, pp 480–483Google Scholar
  37. Morrow WJ, Isenberg DA, Parry HF, Shen L, Okolie LL, Farzaneh F, Shall S, Snaith ML (1982) Studies on autoantibodies to poly(adenosine diphosphate ribose) in SLE and other autoimmune diseases. Ann Rheum Dis 41:396–402PubMedCrossRefGoogle Scholar
  38. Oka J, Ueda K, Hayaishi O, Komura H, Nakanishi K (1984) ADP-ribosyl protein lyase. Purification, properties, and identification of the product. J Biol Chem 259:986–995PubMedGoogle Scholar
  39. Okamoto H (1981) Regulation of proinsulin synthesis in pancreatic islets and a new aspect to insulin-dependent diabetes. Mol Cellul Biochem 37:43–61CrossRefGoogle Scholar
  40. Okamoto H (1985 a) Molecular basis of experimental diabetes: Degeneration, oncogenesis and regeneration of pancreatic B-cells of Islets of Langerhans. BioEssays 2:15–21CrossRefGoogle Scholar
  41. Okamoto H (1985 b) The role of poly(ADP-ribose) synthetase in the development of insulin-dependent diabetes and islet B-cell regeneration. Biomed Biochim Acta 44:15–20Google Scholar
  42. Okamoto H, Yamamoto H, Yonemura Y (1985) Poly(ADP-ribose)synthetase inhibitors induce islet B-cell regeneration in partially depancreatized rats. In: Althaus FR, Hilz H, Shall S (eds) ADP-ribosylation of proteins. Springer, Berlin Heidelberg New York Tokyo, pp 410–416Google Scholar
  43. Okayama H, Honda M, Hayaishi O (1978) Novel enzyme from rat liver that cleaves an ADP-ribosyl histone linkage. Proc Natl Acad Sci USA 75:2254–2257PubMedCrossRefGoogle Scholar
  44. Okolie EE, Shall S (1979) The significance of antibodies to poly(adenosine diphosphate ribose) in systemic lupus erythematosus. Clin Exp Immunol 36:151–164PubMedGoogle Scholar
  45. Painter RB (1980) A replication model for sister chromatid exchange. Mutat Res 70:337–341PubMedCrossRefGoogle Scholar
  46. Pitot HC (1986) Fundamentals of oncology. Dekker, New York, 532 ppGoogle Scholar
  47. Rakieten N, Gordon BS, Beaty A, Cooney DA, Davis RD, Schein PS (1971) Pancreatic islet cell tumors produced by the combined action of streptozotocin and nicotinamide. Proc Soc Exp Biol 137:280–283PubMedGoogle Scholar
  48. Rechavi G, Givol D, Canaani E (1982) Activation of a cellular oncogene by DNA rearrangement: possible involvement of an IS-like element. Nature (London) 300:607–611CrossRefGoogle Scholar
  49. Rosenberg MR, Novicki DL, Jirtle RL, Novotny A, Michalopoulos G (1985) Promoting effect of nicotinamide on the development of renal tubular cell tumors in rats initiated with dieth-ylnitrosamine. Cancer Res 45:809–814PubMedGoogle Scholar
  50. Savard P, Aubin R, Whish WJD, Lord A, Poirier GG (1981) Poly(adenosine diphosphoribose)-polymerase activity and adenosine diphosphate ribosylation of proteins during pancreatic degeneration and regeneration. Cancer Res 41:1417–1421PubMedGoogle Scholar
  51. Schwartz JL, Morgan WF, Brown-Lindquist P, Afzal V, Weichselbaum RR, Wolff S (1985) Comutagenic effects of 3-aminobenzamide in Chinese hamster ovary cells. Cancer Res 45:1556–1559PubMedGoogle Scholar
  52. Sibley JT, Braun RP, Lee JS (1986) The production of antibodies to DNA in normal mice following immunization with poly(ADP-ribose). Clin Exp Immunol 64:563–569PubMedGoogle Scholar
  53. Singh N, Poirier GG, Cerutti PA (1985 a) Tumor promoter phorbol-12-myristate-13-acetate induces poly ADP-ribosylation in human monocytes. Biochem Biophys Res Commun 126:1208–1214PubMedCrossRefGoogle Scholar
  54. Singh N, Poirier GG, Cerutti PA (1985 b) Tumor promoter phorbol-12-myristate-13-acetate induces poly(ADP-ribosyl)ation in fibroblasts. EMBO J 4:1491–1494PubMedGoogle Scholar
  55. Strain AJ (1985) Inhibitors of ADP-ribosyltransferase enhance the transformation of NIH3T3 cells following transfection with SV40 DNA. Exp Cell Res 159:531–535PubMedCrossRefGoogle Scholar
  56. Takahashi S, Ohnishi T, Denda A, Konishi Y (1982) Enhancing effect of 3-aminobenzamide on induction of gamma glutamyltranspeptidase positive foci in rat liver. Chem Biol Interact 39:363–368PubMedCrossRefGoogle Scholar
  57. Takeuchi F, Otsuka F, Enomoto T, Hanaoka F, Yamada M-A, Kamatani N, Nakano K, Mat-suta K, Tanimoto K, Morita T, Miyamoto T (1985) Decrease in the reaction of DNA repair synthesis in response to nicotinamide or 3-aminobenzamide in ultraviolet irradiated systemic lupus erythematosus lymphocytes. J Rheumatol 12:504–507PubMedGoogle Scholar
  58. Tuschl H, Kovac R, Wolf A, Smolen JS (1984) SCE frequencies in lymphocytes of systemic lupus erythematosus patients. Mutat Res 128:167–171PubMedCrossRefGoogle Scholar
  59. Uchigata Y, Yamamoto H, Kawamura A, Okamotoe H (1982) Protection by Superoxide dismu-tase, catalase, and poly(ADP-ribose)synthetase inhibitors against alloxan-and streptozo-tocin-induced islet DNA strand breaks and against the inhibition of proinsulin synthesis. J Biol Chem 257:6084–6088PubMedGoogle Scholar
  60. Volk BW, Wellmann KF, Brancato P (1973) Fine structure of rat islet cell tumors induced by streptozotocin and nicotinamide. Diabetologia 10:37–44CrossRefGoogle Scholar
  61. Williams JC (1985) Glutamyl ribose-5-phosphate storage disease: clinical description and characterization of the stored material. In: Althaus FR, Hilz H, Shall S (eds) ADP-ribosylation of proteins. Springer, Berlin Heidelberg New York Tokyo, pp 167–177Google Scholar
  62. Williams JC, Butler IJ, Rosenberg HS, Verani R, Scott CI, Conley SB (1984 a) Progressive neurologic deterioration and renal failure due to storage of glutamyl ribose-5-phosphate. N Engl J Med 311:152–155PubMedCrossRefGoogle Scholar
  63. Williams JC, Chambers JP, Liehr JG (1984 b) Glutamyl ribose 5-phosphate storage disease. A hereditary defect in the degradation of poly(ADP-ribosyl)ated proteins. J Biol Chem 259:1037–1042PubMedGoogle Scholar
  64. Yamagami T, Miwa A, Takasawa S, Yamamoto H, Okamoto H (1985) Induction of rat pancreatic B-cell tumors by the combined administration of streptozotocin and alloxan and poly(ADP-ribose)synthetase inhibitors. Cancer Res 45:1845–1849PubMedGoogle Scholar
  65. Yamamoto H, Okamato H (1980) Protection by picolinamide, a novel inhibitor of poly(ADP-ribose)synthetase, against both streptozotocin-induced depression of proinsulin synthesis and reduction of NAD content in pancreatic islets. Biochem Biophys Res Commun 95:474–481PubMedCrossRefGoogle Scholar
  66. Yamamoto H, Okamoto H (1982) Poly(ADP-ribose) synthetase inhibitors enhance streptozotocin-induced cell killing of insulinoma cells by inhibiting the repair of DNA damage. FEBS Lett 145:298–302PubMedCrossRefGoogle Scholar
  67. Yamamoto H, Uchigata Y, Okamoto H (1981) Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature (London) 294:284–286CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Felix R. Althaus
    • 1
  • Christoph Richter
    • 2
  1. 1.Institut für Pharmakologie und BiochemieUniversität ZürichZürichGermany
  2. 2.Laboratorium für BiochemieETH-ZentrumZürichGermany

Personalised recommendations