Advertisement

The Bond

  • Felix R. Althaus
  • Christoph Richter
Part of the Molecular Biology Biochemistry and Biophysics book series (MOLECULAR, volume 37)

Abstract

Enzymes of bacterial viruses, and prokaryotic and eukaryotic cells catalyze the transfer of ADP-ribose form NAD+ to specific acceptor proteins. In addition to these true ADP-ribosyltransferase reactions, ADP-ribose-acceptor adducts can result from a nonenzymatic reaction between free ADP-ribose and certain acceptor sites, e.g. by Schiff base formation at lysine, arginine, or histidine residues. For an understanding of the roles of enzymatic or nonenzymatic ADP-ribosyltransferase reactions a knowledge of the chemical nature of the ADP-ribose-protein linkage present in vivo, the way in which it is formed and broken, as well as the identity of the acceptor sites is required. In the case of most viral and bacterial ADP-ribosyltransferases the acceptor proteins for ADP-ribose have been clearly identified, often including the amino acid residue (glutamic acid, diphthamide, arginine, cysteine) serving as the site of modification. The exact chemical nature of the bond between the amino acid residue and ADP-ribose has been elucidated in two cases. First, when nuclei are incubated in vitro with NAD+ , histones are mono-ADP-ribosylated, presumably by poly-ADP-ribose polymerase, via ester linkages to the gamma-carboxyl group of glutamic acid residues and to the alpha-carboxyl group of terminal lysine residues (Riquelme et al. 1979; Burzio et al. 1979; Ogata et al. 1980 a, b). Second, the bond formed by diphtheria toxin between diphthamide and ADP-ribose has been clearly identified (van Ness et al. 1980 a, b).

Keywords

Pertussis Toxin Diphtheria Toxin Rhodospirillum Rubrum Acceptor Protein Guanidino Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abood ME, Hurley JB, Pappone M-C, Bourne HR, Stryer L (1982) Functional homology between signal-coupling proteins. Cholera toxin inactivates the GTPase activity of transdu-cin. J Biol Chem 257:10540–10543PubMedGoogle Scholar
  2. Adamietz P (1982) Acceptor proteins of poly(ADP-ribose). In: Hayaishi O, Ueda K (eds) ADP-ribosylation reactions. Biology and medicine. Academic Press, London New York, pp 77–101Google Scholar
  3. Adamietz P, Rudolph A (1984) ADP-ribosylation of nuclear proteins in vivo. J Biol Chem 259:6841–6846PubMedGoogle Scholar
  4. Adamietz P, Wielckens K, Bredehorst R, Lengyel H, Hilz H (1981) Subcellular distribution of mono(ADP-ribose) protein conjugates in rat liver. Biochem Biophys Res Commun 101:96–103PubMedCrossRefGoogle Scholar
  5. Benjamin RC, Gill DM (1980) ADP-ribosylation in mammalian cell ghosts. Dependence of poly-(ADP-ribose) synthesis on strand breakage in DNA. J Biol Chem 255:10493–10501PubMedGoogle Scholar
  6. Bredehorst R, Ferro AM, Hilz H (1978 a) Determination of ADP-ribose and poly(ADP)-ribose by a new radioimmunoassay. Eur J Biochem 82:115–121PubMedCrossRefGoogle Scholar
  7. Bredehorst R, Wielckens K, Gartemann A, Lengyel H, Klapproth K, Hilz H (1978 b) Two different types of bonds linking single ADP-ribose residues covalently to proteins. Quantification in eukaryotic cells. Eur J Biochem 92:129–135PubMedCrossRefGoogle Scholar
  8. Bredehorst R, Lengyel H, Hilz H, Stark D, Siebert G (1980) Increase of mono(ADP-ribose) protein conjugate levels in rat liver induced by nicotinamide administration. Hoppe-Seyler’s Z Physiol Chem 361:559–562PubMedCrossRefGoogle Scholar
  9. Bredehorst R, Wielckens K, Adamietz P, Steinhagen-Thiessen E, Hilz H (1981) Mono(ADP-ri-bosyl)ation and poly(ADP-ribosyl)ation of proteins in developing liver and in hepatomas. Eur J Biochem 120:267–274PubMedCrossRefGoogle Scholar
  10. Burzio LO (1982) ADP-ribosyl protein linkages. In: Hayaishi O, Ueda K (eds) ADP-ribosylation reactions. Biology and medicine. Academic Press, London New York, pp 103–116Google Scholar
  11. Burzio LO, Riquelme PT, Koide SS (1979) ADP-ribosylation of rat liver nucleosomal core his-tones. J Biol Chem 254:3029–3037PubMedGoogle Scholar
  12. Chambon P, Weill JD, Doly J, Strosser MT, Mandel P (1966) On the formation of a novel ade-nylic compound by enzymatic extracts of liver nuclei. Biochem Biophys Res Commun 25:638–643CrossRefGoogle Scholar
  13. Dop C van, Tsubokawa M, Bourne HR, Ramachandran J (1984) Amino acid sequence of retinal transducin at the site ADP-ribosylated by cholera toxin. J Biol Chem 259:696–698PubMedGoogle Scholar
  14. Dunlop PC, Bodley JW (1983) Biosynthetic labeling of diphthamide in Saccharomyces cerevisiae. J Biol Chem 258:4754–4758PubMedGoogle Scholar
  15. Futai M, Mizuno D (1967) A new phosphodiesterase forming nucleoside 5′-monophosphate from rat liver. Its partial purification and substrate specificity for nicotinamide adenine dinucleotide and oligonucleotides. J Biol Chem 242:5301–5307PubMedGoogle Scholar
  16. Futai M, Mizuno D, Sugimura T (1968) Mode of action of rat liver phosphodiesterase on a polymer of phosphoribosyl adenosine monophosphate and related compounds. J Biol Chem 243:6325–6329PubMedGoogle Scholar
  17. Gartemann A, Bredehorst R, Wielckens K, Stratling WHH, Hilz H (1981) Mono-and poly-ADP-ribosylation of proteins in mouse kidney following castration and testosterone treatment. Biochem J 198:37–44PubMedGoogle Scholar
  18. Goff CG (1974) Chemical structure of a modification of the Escherichia coli ribonucleic acid polymerase alpha polypeptides induced by bacteriophage T4 infection. J Biol Chem 249:6181–6190PubMedGoogle Scholar
  19. Hawkins DJ, Browning ET (1982) Tubulin adenosine diphosphate ribosylation is catalyzed by cholera toxin. Biochemistry 21:4474–4479PubMedCrossRefGoogle Scholar
  20. Hilz H (1981) ADP-ribosylation of proteins — A multifunctional process. Hoppe-Seyler’s Z Physiol Chem 362:1415–1425PubMedCrossRefGoogle Scholar
  21. Hilz H, Bredehorst R, Wielckens K, Adamietz P (1980) Quantitation of mono (ADPR) protein conjugates from intact tissues at various stages of gene expression. In: Smulson ME, Sugimura T (eds) Novel ADP-ribosylations of regulatory enzymes and proteins. Elsevier/ North-Holland Biomedical Press, Amsterdam New York, pp 143–151Google Scholar
  22. Hilz H, Bredehorst R, Adamietz P, Wielckens K (1982 a) Subfractions and cellular distribution of mono(ADP-ribosyl) proteins in eukaryotic cells. In: Hayaishi O, Ueda K (eds) ADP-ribosylation reaction. Biology and medicine. Academic Press, London New York, pp 207–219Google Scholar
  23. Hilz H, Wielckens K, Bredehorst R (1982 b) Quantitation of mono(ADP-ribosyl) and poly-(ADP-ribosyl) proteins. In: Hayaishi O, Ueda K (eds) ADP-ribosylation reaction. Biology and medicine. Academic Press, London New York, pp 305–321Google Scholar
  24. Hilz H, Koch R, Fanick W, Klapproth K, Adamietz P (1984) Nonenzymic ADP-ribosylation of specific mitochondrial polypeptides. Proc Natl Acad Sci USA 81:3929–3933PubMedCrossRefGoogle Scholar
  25. Hilz H, Koch R, Kreimeyer A, Adamietz P, Jacobson MK (1985) Mono(ADP-ribosyl)ation and phospho(ADP-ribosyl)ation reactions in eukaryotic cells. In: Althaus FR, Hilz H, Shall S (eds) ADP-ribosylation of proteins. Springer, Berlin Heidelberg New York Tokyo, pp 518–525Google Scholar
  26. Hofstetter W, Muhlebach T, Lotscher HR, Winterhalter KH, Richter C (1981) ATP prevents both hydroperoxide-induced hydrolysis of pyridine nucleotides and release of calcium in rat liver mitochondria. Eur J Biochem 117:361–367PubMedGoogle Scholar
  27. Honjo T, Nishizuka Y, Hayaishi O, Kato I (1968) Diphtheria toxin-dependent adenosine diphos-phate-ribosylation of aminoacyltransferase II and inhibition of protein synthesis. J Biol Chem 243:3553–3555PubMedGoogle Scholar
  28. Hsia JA, Tsai S-C, Adamik R, Yost DA, Hewlett EL, Moss J (1985) Amino acid-specific ADP-ribosylation. Sensitivity to hydroxylamine of [cysteine (ADP-ribose)]protein and [arginine (ADP-ribose)] protein linkages. J Biol Chem 260:16187–16191PubMedGoogle Scholar
  29. Hurley JB, Simon MI, Teplow DB, Robishaw JD, Gilman AG (1984) Homologies between signal transducing G proteins and ras gene products. Science 226:860–862PubMedCrossRefGoogle Scholar
  30. Iglewski BH, Kabat D (1975) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Natl Acad Sci USA 72:2284–2288PubMedCrossRefGoogle Scholar
  31. Iglewski BH, Liu PV, Kabat D (1977) Mechanism of action of Pseudomonas aeruginosa exotoxin A: adenosine diphosphate-ribosylation of mammalian elongation factor 2 in vitro and in vivo. Infect Immunol 15:138–144Google Scholar
  32. Iglewski BH, Sadoff J, Bjorn MJ, Maxwell ES (1978) Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A. Proc Natl Acad Sci USA 75:3211–3215PubMedCrossRefGoogle Scholar
  33. Iglewski WJ, Lee H, Muller P (1984) ADP-ribosyltransferase from beef liver which ADP-ribosyl-ates elongation factor-2. FEBS Lett 173:113–118PubMedCrossRefGoogle Scholar
  34. Jacobson MK, Payne DM, Juarez-Salinas H, Alvarez-Gonzales R, Sims JL, Jacobson EL (1984) Determination of in vivo levels of polymeric and monomeric ADP-ribose by fluorescence methods. In: Wold F, Moldave K (eds) Methods of enzymology, vol 106. Academic Press, London New York, pp 483–494Google Scholar
  35. Jacobson MK, Payne DM, Smith KP, Cardenas ME, Moss J, Jacobson EL (1985) Mono ADP-ribosylation of proteins at arginine in vivo. In: Althaus FR, Hilz H, Shall S (eds) ADP-ri-bosylation of proteins. Springer, Berlin Heidelberg New York Tokyo, pp 526–529Google Scholar
  36. Komura H, Iwashita T, Naoki H, Nakanishi K, Oka J, Ueda K, Hayaishi O (1983) Structure and synthesis of 3-deoxy-D-glycero-pentos-2-ulose, an unusual sugar produced enzymati-cally from (ADP-ribosyl)histone H2B. J Am Chem Soc 105:5164–5165CrossRefGoogle Scholar
  37. Kreimeyer A, Hilz H (1985) Mono(ADP-ribosyl)histone H1 in alkylated hepatoma cells: unusual acceptor site. In: Althaus FR, Hilz H, Shall S (eds) ADP-ribosylation of proteins. Springer, Berlin Heidelberg New York Tokyo, pp 272–276Google Scholar
  38. Kreimeyer A, Wielckens K, Adamietz P, Hilz H (1984) DNA-repair associated ADP-ribosylation in vivo. J Biol Chem 259:890–896PubMedGoogle Scholar
  39. Kreimeyer A, Adamietz P, Hilz H (1985) Alkylation-induced mono(ADP-ribosyl)-histones H1 and H2B. Hydroxylamine-resistant linkage in hepatoma cells. Biol Chem Hoppe-Seyler 366:537–544PubMedCrossRefGoogle Scholar
  40. Kun E, Chang CY, Sharma ML, Ferro AM, Nitecki D (1976) Covalent modification of proteins by metabolites of NAD+. Proc Natl Acad Sci USA 73:3131–3135PubMedCrossRefGoogle Scholar
  41. Lee H, Iglewski WJ (1984) Cellular ADP-ribosyltransferase with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A. Proc Natl Acad Sci USA 81:2703–2707PubMedCrossRefGoogle Scholar
  42. Lindner C, Hilz H (1982) ADP-ribosyl-protein conjugate subclasses in various tissues. Specific influence of thyroid hormone on liver conjugates. Biochem J 206:61–65PubMedGoogle Scholar
  43. Lochrie MA, Hurley JB, Simon MI (1985) Sequence of the alpha subunit of photoreceptor G protein: homologies between transducin, ras, and elongation factors. Science 228:96–99PubMedCrossRefGoogle Scholar
  44. Ludden PW, Burris RH (1978) Purification and properties of nitrogenase from Rhodospirillum rubrum and evidence for phosphate, ribose and an adenine-like unit covalently bound to the iron protein. Biochem J 175:251–259PubMedGoogle Scholar
  45. Ludden PW, Preston GG, Dowling TE (1982) Comparison of active and inactive forms of iron protein from Rhodospirillum rubrum. Biochem J 203:663–668PubMedGoogle Scholar
  46. Meyer T, Hilz H (1986) Production of anti-(ADP-ribose) antibodies with the aid of a dinucleo-tide-pyrophosphatase-resistant hapten and their application for the detection of mono-(ADP-ribosyl)ated polypeptides. Eur J Biochem 155:157–165PubMedCrossRefGoogle Scholar
  47. Miwa M, Tanaka M, Matsushima T, Sugimura T (1974) Purification and properties of a glyco-hydrolase from calf thymus splitting ribose-ribose linkages of poly(adenosine diphosphate ribose). J Biol Chem 249:3475–3482PubMedGoogle Scholar
  48. Moehring TJ, Moehring JM (1977) Selection and characterization of cells resistant to diphtheria toxin and Pseudomonas exotoxin A: presumptive translational mutants. Cell 11:447–454PubMedCrossRefGoogle Scholar
  49. Moss J, Stanley SJ (1981 a) Amino acid-specific ADP-ribosylation. Identification of an arginine-dependent ADP-ribosyltransferase in rat liver. J Biol Chem 256:7830–7833PubMedGoogle Scholar
  50. Moss J, Stanley SJ (1981b) Histone-dependent and histone-independent forms of an ADP-ribosyltransferase from human and turkey erythrocytes. Proc Natl Acad Sci USA 78:4809–4812PubMedCrossRefGoogle Scholar
  51. Moss J, Vaughan M (1977) Mechanism of action of choleragen: evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem 252:2455–2457PubMedGoogle Scholar
  52. Moss J, Vaughan M (1978) Isolation of an avian erythrocyte protein possessing ADP-ribosyltransferase activity and capable of activating adenylate cyclase. Proc Natl Acad Sci USA 75:3621–3624PubMedCrossRefGoogle Scholar
  53. Moss J, Vaughan M (1979) Activation of adenylate cyclase by choleragen. Annu Rev Biochem 48:581–600PubMedCrossRefGoogle Scholar
  54. Moss J, Vaughan M (1982) Mechanism of action of Escherichia coli heat labile enterotoxin: activation of adenylate cyclase by ADP-ribosylation. In: Hayaishi O, Ueda K (eds) ADP-ribosylation reactions. Biology and medicine. Academic Press, London New York, pp 623–636Google Scholar
  55. Moss J, Garrison S, Oppenheimer NJ, Richardson SM (1979) NAD-dependent ADP-ribosylation of arginine and proteins by Escherichia coli heat-labile enterotoxin. J Biol Chem 254:6270–6272PubMedGoogle Scholar
  56. Moss J, Stanley SJ, Watkins PA (1980) Isolation and properties of an NAD-and guanidine-de-pendent ADP-ribosyltransferase from turkey erythrocytes. J Biol Chem 255:5838–5840PubMedGoogle Scholar
  57. Moss J, Yost DA, Stanley SJ (1983) Amino acid-specific ADP-ribosylation. Stability of the reaction products of an NAD:arginine ADP-ribosyltransferase to hydroxylamine and hydroxide. J Biol Chem 258:6466–6470PubMedGoogle Scholar
  58. Moss J, Jacobson MK, Stanley SJ (1985) Reversibility of arginine-specific mono(ADP-ribosyla-tion). Identification in erythrocytes of an ADP-ribose-L-arginine cleavage enzyme. Proc Natl Acad Sci USA 82:5603–5607PubMedCrossRefGoogle Scholar
  59. Navon SE, Fung BK-K (1984) Characterization of transducin from bovine retinal rod outer segments. Mechanism and effects of cholera toxin-catalyzed ADP-ribosylation. J Biol Chem 259:6686–6693PubMedGoogle Scholar
  60. Ness BG van, Howard JB, Bodley JL (1980 a) ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J Biol Chem 255:10710–10716PubMedGoogle Scholar
  61. Ness BG van, Howard JB, Bodley JL (1980 b) ADP-ribosylation of elongation factor 2 by diphtheria toxin. Isolation and properties of the novel ribosyl-amino acid and its hydrolysis products. J Biol Chem 255:10717–10720PubMedGoogle Scholar
  62. Nishizuka Y, Ueda K, Nakazawa K, Hayaishi O (1967) Studies on the polymer of adenosine di-phosphate ribose. Enzymic formation from nicotinamide adenine dinucleotide in mammalian nuclei. J Biol Chem 242:3164–3171PubMedGoogle Scholar
  63. Nishizuka Y, Ueda K, Hayaishi O, Kato I (1968) Enzymic adenosine diphosphate ribosylation of histone and poly adenosine diphosphate ribose synthesis in rat liver nuclei. J Biol Chem 243:3765–3767PubMedGoogle Scholar
  64. Nishizuka Y, Ueda K, Yoshihara K, Takeda M, Hayaishi O (1969) Enzymic adenosine di-phosphoribosylation of nuclear proteins. Cold Spring Harbor Symp Quant Biol 34:781–786PubMedGoogle Scholar
  65. Ogata N, Ueda K, Kagamiyama H, Hayaishi O (1980a) ADP-ribosylation of histone H1. Identification of glutamic acid residues 2, 14, and the COOH terminal lysine residue as the modification sites. J Biol Chem 255:7616–7620PubMedGoogle Scholar
  66. Ogata N, Ueda K, Hayaishi O (1980 b) ADP-ribosylation of histone H2B. Identification of glutamic acid residue 2 as the modification site. J Biol Chem 255:7610–7615PubMedGoogle Scholar
  67. Oka J, Ueda K, Hayaishi O, Komura H, Nakanishi K (1984) ADP-ribosyl protein lyase. Purification, properties, and identification of the product. J Biol Chem 259:986–995PubMedGoogle Scholar
  68. Okayama H, Honda M, Hayaishi O (1978) Novel enzyme from rat liver that cleaves an ADP-ribosyl histone linkage. Proc Natl Acad Sci USA 75:2254–2257PubMedCrossRefGoogle Scholar
  69. Oppenheimer NJ (1978) Structural determination and stereospecificity of the choleragen-cata-lyzed reaction of NAD+ with guanidines. J Biol Chem 253:4907–4910PubMedGoogle Scholar
  70. Oppenheimer NJ, Bodley JW (1981) Diphtheria toxin. Site and configuration of ADP-ribosylation of diphthamide in elongation factor 2. J Biol Chem 256:8579–8581PubMedGoogle Scholar
  71. Ovchinnikov YA, Lipkin VM, Modyanov NN, Chertov OY, Smirnov YV (1977) Primary structure of alpha-subunit of DNA-dependent RNA polymerase from Escherichia coli. FEBS Lett 76:108–115PubMedCrossRefGoogle Scholar
  72. Payne DM, Jacobson EL, Moss J, Jacobson MK (1985) Modification of proteins by mono-(ADP-ribosylation) in vivo. Biochemistry 24:7540–7549PubMedCrossRefGoogle Scholar
  73. Pesce A, Casoli C, Schito GC (1976) Rifampicin-resistant RNA polymerase and NAD transfer-ase activities in coliphage N4 virions. Nature (London) 262:412–414CrossRefGoogle Scholar
  74. Pope MR, Murrell SA, Ludden PW (1985 a) Purification and properties of the heat-released nu-cleotide-modifying group from the inactive iron protein of nitrogenase from Rhodospirillum rubrum. Biochemistry 24:2374–2380PubMedCrossRefGoogle Scholar
  75. Pope MR, Murrell SA, Ludden PW (1985 b) Covalent modification of the iron protein of nitrogenase from Rhodospirillum rubrum by adenosine diphosphoribosylation of a specific argi-nine residue. Proc Natl Acad Sci USA 82:3173–3177PubMedCrossRefGoogle Scholar
  76. Reeves R, Chang D, Chung S-C (1981) Carbohydrate modification of the high mobility group proteins. Proc Natl Acad Sci USA 78:6704–6708PubMedCrossRefGoogle Scholar
  77. Richter C, Winterhalter KH, Baumhuter S, Lotscher HR, Moser B (1983) ADP-ribosylation in inner membrane of rat liver mitochondria. Proc Natl Acad Sci USA 80:3188–3192PubMedCrossRefGoogle Scholar
  78. Riquelme PT, Burzio LO, Koide SS (1979) ADP-ribosylation of rat liver lysine-rich histone in vitro. J Biol Chem 254:3018–3028PubMedGoogle Scholar
  79. Rohrer H, Zillig W, Mailhammer R (1975) ADP-ribosylation of DNA-dependent RNA polymerase of E. coli by an NAD+:protein ADP-ribosyltransferase from bacteriophage T4. Eur J Biochem 60:227–238PubMedCrossRefGoogle Scholar
  80. Saari LL, Triplett EW, Ludden PW (1984) Purification and properties of the activating enzyme for iron protein of nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum. J Biol Chem 259:15502–15508PubMedGoogle Scholar
  81. Saari LL, Pope RM, Murrell SA, Ludden PW (1986) Studies on the activating enzyme for iron protein of nitrogenase from Rhodospirillum rubrum. J Biol Chem 261:4973–4977PubMedGoogle Scholar
  82. Skorko R (1982) T4 and N4 phage-encoded ADP-ribosyltransferases. In: Hayaishi O, Ueda K (eds) ADP-ribosylation reactions. Biology and medicine. Academic Press, London New York, pp 647–659Google Scholar
  83. Skorko R, Kur J (1981) ADP-ribosylation of proteins in non-infected Escherichia coli cells. Eur JBiochem 116:317–322CrossRefGoogle Scholar
  84. Smith KP, Benjamin RC, Moss J, Jacobson MK (1985) Identification of enzymatic activities which process protein bound mono(ADP-ribose). Biochem Biophys Res Commun 126:136–142PubMedCrossRefGoogle Scholar
  85. Soman G, Mickelson JR, Louis CF, Graves DJ (1984) NAD:guanidino group specific mono-ADP-ribosyltransferase activity in skeletal muscle. Biochem Biophys Res Commun 120:973–980PubMedCrossRefGoogle Scholar
  86. Sugimura T, Fujimura S, Hasegawa S, Kawamura Y (1967) Polymerization of the adenosine 5′-diphosphate ribose moiety of NAD by rat liver nuclear enzymes. Biochim Biophys Acta 138:438–441PubMedGoogle Scholar
  87. Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M (1984) ADP-riobsyltransferase from hen liver nuclei. Purification and characterization. J Biol Chem 259:2022–2029PubMedGoogle Scholar
  88. Thompson MR, Iglewski BH (1982) Pseudomonas aeruginosa toxin A and exoenzyme S. In: Hayaishi O, Ueda K (eds) ADP-ribosylation reactions. Biology and medicine. Academic Press, London New York, pp 661–674Google Scholar
  89. Ueda K, Oka J, Narumiya S, Miyakawa N, Hayaishi O (1972) Poly ADP-ribose glycohydrolase from rat liver nuclei, a novel enzyme degrading the polymer. Biochem Biophys Res Commun 46:516–523PubMedCrossRefGoogle Scholar
  90. Ueda K, Omachi A, Kawaichi M, Hayaishi O (1975) Natural occurrence of poly(ADP-ribosyl) histones in rat liver. Proc Natl Acad Sci USA 72:205–209PubMedCrossRefGoogle Scholar
  91. Ueda K, Kawaichi M, Okayama H, Hayaishi O (1979) Poly(APR-ribosyl)ation of nuclear proteins. Enzymatic elongation of chemically synthesized ADP-ribose-histone adducts. J Biol Chem 254:679–687PubMedGoogle Scholar
  92. Ueda K, Hayaishi O, Oka J, Komura H, Nakanishi K (1985) 5′-ADP-3″-deoxypentos-2″-ulose. A novel product of ADP-ribosyl protein lyase. In: Althaus FR, Hilz H, Shall S (eds) ADP-ribosylation of proteins. Springer, Berlin Heidelberg New York Tokyo, pp 159–166Google Scholar
  93. West RE Jr, Moss J, Vaughan M, Liu T-Y (1985) Pertussis-toxin-catalyzed ADP-ribosylation of transducin. J Biol Chem 260:14428–14430PubMedGoogle Scholar
  94. Wielckens K, Garbrecht M, Kittler M, Hilz H (1980) ADP-ribosylation of nuclear proteins in normal lymphocytes and in low-grade malignant non-Hodgkin lymphoma cells. Eur J Biochem 104:279–287PubMedCrossRefGoogle Scholar
  95. Wielckens K, Bredehorst R, Adamietz P, Hilz H (1981) Protein-bound polymeric and mono-meric ADP-ribose residues in hepatic tissues. Comparative analyses using a new procedure for the quantification of poly(ADP-ribose). Eur J Biochem 117:69–74PubMedCrossRefGoogle Scholar
  96. Wielckens K, Schmidt A, George E, Bredehorst R, Hilz H (1982) DNA fragmentation and NAD depletion. J Biol Chem 257:12872–12877PubMedGoogle Scholar
  97. Wielckens K, George E, Pless T, Hilz H (1983) Stimulation of poly (ADP-ribosyl)ation during Ehrlich ascites tumor cell “starvation” and suppression of concomitant DNA fragmentation by benzamide. J Biol Chem 258:4098–4104PubMedGoogle Scholar
  98. Williams JC, Chambers JP, Liehr JG (1984 a) Glutamyl ribose-5-phosphate storage disease. A hereditary defect in the degradation of poly(ADP-ribosylated) proteins. J Biol Chem 259:1037–1042PubMedGoogle Scholar
  99. Williams JC, Butler IJ, Rosenberg HS, Verani R, Scott CI, Conley SB (1984 b) Progressive neurologic deterioration and renal failure due to storage of glutamyl ribose-5-phosphate. N Engl J Med 311:152–155PubMedCrossRefGoogle Scholar
  100. Yost DA, Moss J (1983) Amino acid-specific ADP-ribosylation. Evidence for two distinct NAD:arginine ADP-ribosyltransferases in turkey erythrocytes. J Biol Chem 258:4926–4929PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Felix R. Althaus
    • 1
  • Christoph Richter
    • 2
  1. 1.Institut für Pharmakologie und BiochemieUniversität ZürichZürichGermany
  2. 2.Laboratorium für BiochemieETH-ZentrumZürichGermany

Personalised recommendations