Skip to main content

Network Representations and Match Filters for Invariant Object Recognition

  • Conference paper
Pattern Recognition Theory and Applications

Part of the book series: NATO ASI Series ((NATO ASI F,volume 30))

Abstract

Artificial Intelligence (AI) deals with the types of problem solving and decision making that humans continuously face in dealing with the world. Such activity involves by its very nature complexity, uncertainty, and ambiguity which can “distort” the phenomena (e.g., imagery) under observation. However, following the human example, any artificial vision system should process information such that the results are invariant to the vagaries of the data acquisition process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballard, D.H., C.M. Brown (1982), “Computer Vision,” Prentice Hall, 1982.

    Google Scholar 

  2. Ballard, D.H., G.E. Hinton, T.J. Sejnowski, (1983), Parallel visual computation, “Nature,” 306, 5938, 21–26.

    Article  Google Scholar 

  3. Barrow, H.G., J.M. Tenenbaum (1978), Recovering intrinsic scene characteristics from images, in “Computer Vision Systems,” A. Hanson and E. Riseman (Eds.), Academic Press.

    Google Scholar 

  4. Brooks, R. (1981), Symbolic reasoning among 3-D models and 2-D images, “Artificial Intelligence,” 17, 1–3.

    Article  Google Scholar 

  5. Caulfield, H.J., M.H. Weinberg (1982), Computer recognition of 2-D pattern using generalized matched filters, “Applied Optics,” 21,9.

    Article  Google Scholar 

  6. Davis, L.S., A. Rosenfeld, (1981), Cooperating processes for low-level vision: a survey, “Artificial Intelligence,” 17, 1–3, 245–263.

    Article  Google Scholar 

  7. Edelman, G.M. (1982), Group selection and higher brain function, “Bulletin of the American Academy of Arts and Science,” vol. XXXVI, 1.

    Google Scholar 

  8. Farah, M.J. (1985), The neurological basis of mental imagery: a componential analysis, in “Visual Cognition,” S. Pinker (Ed.), MIT Press.

    Google Scholar 

  9. F la veil, J.H. (1985), “Cognitive Development,” (2nd Ed.), Prentice Hall.

    Google Scholar 

  10. Fukushima, K. (1984), A hierarchical neural network model for associative memory, “Biol. Cybernetics,” 50, 105–113.

    Article  MATH  Google Scholar 

  11. Garvey, T.D., J.D. Lowrance (1983), Evidential reasoning: an implementation for multisensor integration, TN307, AI Center, SRI, Palo Alto, CA.

    Google Scholar 

  12. Granrud, C., R. Haake, A. Yonas (1985), Sensitivity to familiar size: the effects of memory on spatial perception, “Perception Psychophysics,” 37, 459–466.

    Article  Google Scholar 

  13. Hester, C., Casasent, D. (1981), Interclass discrimination using synthetic discriminant functions (SDF), “Proc. SPIE on Infrared Technology for Target Detection and Classification,” Vol. 302.

    Google Scholar 

  14. Hopfield, J.J. (1982), Neural networks and physical systems with emergent collective computational abilities, “Proc. Natl. Acad. Sci. USA,” 79, April 1982.

    Google Scholar 

  15. Hubel, D., Wiesel, T., (1979), Brain mechanisms of vision, “Scientific American “October.

    Google Scholar 

  16. Jacobson, L., H. Wechsler (1985a), Joint spatial/spatial frequency representations for image processing, “SPIE/Cambridge Int. Conference on Intelligent Robots and Computer Vision,” Boston, MA.

    Google Scholar 

  17. Jacobson, L., H. Wechsler (1985b), FOVEA — A system for invariant visual form recognition, “2nd Int. Symposium on Optical and Electro-Optical Applied Science and Recognition,” Cannes, France.

    Google Scholar 

  18. Kirpatrick, S., C.D. Gelatt, M.P. Vecchi (1983), Optimization by simulated annealing, “Science,” 220, 671.

    Article  MathSciNet  Google Scholar 

  19. Kohonen, T. (1984), “Self-Organization and Associative-Memories,” Springer-Verlag.

    Google Scholar 

  20. Kuhn, T. (1970), “The Structure of Scientific Revolution,” The University of Chicago Press.

    Google Scholar 

  21. Minsky, M., S. Papert (1968), “Perceptrons,” MIT Press.

    Google Scholar 

  22. Mulgaonkar, P.G., L.G. Shapiro (1985), Hypothesis-based geometric reasoning about perspective images, “Proc. of the Third Workshop on Computer Vision, Representation and Control” Bellaire, Michigan.

    Google Scholar 

  23. Nahar, S., S. Sahni, E. Shragowitz (1985), Simulated annealing and combinatorial optimization, TR 85–56, Dept. of Computer Science, University of Minnesota.

    Google Scholar 

  24. Searl, J. (1985), “Mind, Brain and Science,” Harvard University Press.

    Google Scholar 

  25. Simon, H.A., (1984), “The Science of the Artificial,” (2nd ed.), MIT Press.

    Google Scholar 

  26. Tanimoto, S., T. Pavlidis (1975), A hierarchical data structure for picture processing, “Computer Graphics and Image Processing,” 4, 2, 104–119.

    Article  Google Scholar 

  27. Van Essen, D.C., J.H.R. Marniseli (1983), Hierarchical organization and functional streams in the visual cortex, TINS (Trends in Neuro Sciences).

    Google Scholar 

  28. Witkin, A.P., J.M. Tenenbaum (1983), On the role of structure in vision, in “Human and Machine Vision,” J. Beck, B. Hope and A. Rosenfeld (Eds.), Academic Press.

    Google Scholar 

  29. Wittgenstein, L. (1953), “Philosophical Investigations,” MacMillan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wechsler, H. (1987). Network Representations and Match Filters for Invariant Object Recognition. In: Devijver, P.A., Kittler, J. (eds) Pattern Recognition Theory and Applications. NATO ASI Series, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83069-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83069-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83071-6

  • Online ISBN: 978-3-642-83069-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics