Electronic Structure, Cohesion, and Effective Interatomic Potentials in Small Transition Metal Particles

  • D. E. Ellis
  • H. P. Cheng
Conference paper
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 4)

Abstract

The electronic properties of small metal particles are of interest for a variety of scientific and technical reasons. These reasons range from the development of molecular beam techniques for the production of well-characterized N-atorn particle data to efforts to understand and control clustering and segregation in alloys, and to the exploitation of chemical reactivity and selectivity essential for catalytic applications. In recent years, it has become possible to apply self-consistent field models in the framework of local density theory to provide a description of electronic energy levels and spectroscopic properties of systems of a reasonable size, say N < 100. In addition, sufficiently precise numerical methods are now available to permit the calculation of atomic binding energies and to determine the relative stability of different cluster geometries. This opens the door to fruitful interactions between “first-principles” theory and the semiempirical models used in dynamical and thermodynamical simulations, and to interpretations of current data on physically interesting systems.

Keywords

Platinum Cobalt Carbonyl Rosen Chemisorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    E.J. Baerends, D.E. Ellis and P. Ros, Chem. Phys. 2, 41 (1973)CrossRefGoogle Scholar
  2. 1b.
    A. Rosen, D.E. Ellis, H. Adachi and F.W. Averill, J. Chem. Phys. 65, 3629 (1976)CrossRefADSGoogle Scholar
  3. 1c.
    A. Rosén and D.E. Ellis, J. Chem. Phys. 62, 3039 (1975)CrossRefADSGoogle Scholar
  4. 1d.
    B. Delley and D.E. Ellis, J. Chem. Phys. 76, 1949 (1982).CrossRefADSGoogle Scholar
  5. 2.
    B. Delley, D.E. Ellis, A.J. Freeman, E.J. Baerends, and D. Post, Phys. Rev. B27, 2132 (1983).ADSGoogle Scholar
  6. 3a.
    G.F. Holland and D.E. Ellis, and W.C. Trogler, J. Am. Chem. Soc. 108, 1884 (1986)CrossRefGoogle Scholar
  7. 3b.
    B. Delley, M.C. Manning, D.E. Ellis, J. Berkowitz, and W.C. Trogler, Inorg. Chem. 21, 2247 (1982).CrossRefGoogle Scholar
  8. 4.
    R.A. Johnson and W.D. Wilson, in “Interatomic Potential and Simulation of Lattice Defects”, ed. P.C. Gehlen, J.R. Beeler, and R.I. Jaffee, (Plenum, New York 1971)Google Scholar
  9. 5.
    A.E. Carlsson, C.D. Gellatt, and H. Ehrenreich, Philos. Mag. A41, 241 (1980).ADSGoogle Scholar
  10. 6a.
    M.M. Goodgame and W.A. Goddard III, Phys. Rev. Lett. 48, 135 (1982)CrossRefADSGoogle Scholar
  11. 6b.
    T.H. Upton and W.A. Goddard III, CRC Crit. Rev. Solid State Mat. Sci. 10, 261 (1981).CrossRefADSGoogle Scholar
  12. 7a.
    T. Ziegler, J.G. Snijders, and E.J. Baerends, J. Chem. Phys. 74, 1271 (1981)CrossRefADSGoogle Scholar
  13. 7b.
    J.G. Snijders and E.J. Baerends, in Electron Distribution and The Chemical Bond, ed. by M.B. Hall, P. Coppens (Plenum NY, 1982) p.111Google Scholar
  14. 8.
    J. Harris and R.O. Jones, J. Chem. Phys. 70, 830 (1979).CrossRefADSGoogle Scholar
  15. 9.
    G.S. Painter and F.W. Averill, Phys. Rev. 28, S536 (1983).Google Scholar
  16. 10.
    D. Delley, A.J. Freeman and D.E. Ellis, Phys. Rev. Lett. 50, 488 (1983).CrossRefADSGoogle Scholar
  17. 11a.
    T.H. Upton and W.A. Goddard, III, J. Am. Chem. Soc. 100, 5659 (1978)CrossRefGoogle Scholar
  18. 11b.
    I. Shim, J.P. Dahl and H. Johansen, Int. J. Quant. Chem. 15, 311 (1979).CrossRefGoogle Scholar
  19. 12.
    H.P. Cheng and D.E. Ellis, (manuscript in preparation).Google Scholar
  20. 13.
    M.S. Daw and M.I. Baskes, Phys. Rev. B29, 6433 (1984).ADSGoogle Scholar
  21. 14.
    G.F. Holland, D.E. Ellis and W.C. Trogler, J. Chem. Phys. 83, 3507 (1985).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • D. E. Ellis
    • 1
  • H. P. Cheng
    • 1
  1. 1.Department of Physics and Astronomy and Materials Research CenterNorthwestern UniversityEvanstonUSA

Personalised recommendations