Skip to main content

Melting and Freezing of Microclusters from Analytics and Simulations

  • Conference paper
Microclusters

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 4))

Abstract

Analytic theory and numerical simulations indicate that microclusters may exhibit solid-like and liquid-like phases which can coexist over a non zero range of temperature. The lower bound for existence of a stable liquid-like phase is a sharp freezing temperature Tf and the upper bound for existence of a stable solid-like phase is a sharp melting temperature Tm. The temperatures Tf and Tm are unequal for small systems; between them is the temperature Teq at which the free energies of the solid-like and liquid-like clusters of a specified composition are equal. Observable phase-like behavior also requires that a dynamical criterion be satisfied, i.e. that the cluster persist in each phase long enough to develop well-defined equilibrium properties of that phase. This criterion is met by small clusters of argon of most but not all sizes. Taking averages inadvertently over both phases can hide the coexistence phenomenon; averaging properties separately for the two phases exhibits the double-valued character of the equation of state and other properties in the coexistence range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.E. Kellman, R.S. Berry: Chem. Phys. Lett. 42, 327 (1976)

    Article  ADS  Google Scholar 

  2. F. Amar, M.E. Kellman, R.S. Berry: J. Chem. Phys. 70, 1973 (1979)

    Google Scholar 

  3. M.E. Kellman, F. Amar, R.S. Berry: J. Chem. Phys. 73, 2387 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  4. G.S. Ezra, R.S. Berry: J. Chem. Phys. 76, 3679 (1982)

    Article  ADS  Google Scholar 

  5. R.S. Berry, J. Jellinek, G Natanson: Chem. Phys. Lett. 107, 227 (1984); Phys. Rev. A30, 919 (1984).

    Article  ADS  Google Scholar 

  6. G. Natanson, F. Amar, R.S. Berry: J. Chem. Phys. 78, 399 (1983).

    Article  ADS  Google Scholar 

  7. S. Gartenhaus, C. Schwartz: Phys. Rev. 108, 482 (1957).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. C.L. Briant, J.J. Burton: J. Chem. Phys. 63, 2045 (1975)

    Article  ADS  Google Scholar 

  9. R.D. Etters, J.B. Kaelberer: Phys. Rev. All, 1068 (1975)

    Google Scholar 

  10. R.D. Etters, J.B. Kaelberer: J. Chem. Phys. 66, 5112 (1977)

    Article  ADS  Google Scholar 

  11. R.D. Etters, R. Danilowicz, J. Dugan: J. Chem. Phys. 67, 1570 (1977)

    Article  ADS  Google Scholar 

  12. R.D. Etters, R. Danilowicz, J.B. Kaelberer: J. Chem. Phys. 57, 4145 (1977)

    ADS  Google Scholar 

  13. J.B. Kaelberer, R.D. Etters: J. Chem. Phys. 66, 3233 (1977).

    Article  ADS  Google Scholar 

  14. N. Nishioka: Phys. Rev. A16., 2143 (1977).

    ADS  Google Scholar 

  15. K. Yamada, M. Winnewisser: Z. Naturforsch. A31, 134 (1976).

    ADS  Google Scholar 

  16. V.V. Nauchitel, A.J. Pertsin: Mol. Phys. 40 1341 (1980).

    Article  ADS  Google Scholar 

  17. N. Quirke, P. Sheng: Chem. Phys. Lett. 110 63 (1984).

    Article  ADS  Google Scholar 

  18. J. Jellinek, T.L. Beck, R.S. Berry: J. Chem. Phys. 84, 2783 (1986).

    Article  ADS  Google Scholar 

  19. H.L. Davis, J. Jellinek, R.S. Berry (in preparation).

    Google Scholar 

  20. F.H. Stillinger, T.A. Weber: Phys. Rev. A25, 978 (1982)

    ADS  Google Scholar 

  21. ibid. 28, 2408 (1983)

    Google Scholar 

  22. J. Phys. Chem. 87, 2833 (1983)

    Google Scholar 

  23. RA LaViolette, F.H. Stillinger: J. Chem. Phys. 83, 4079 (1985).

    Article  ADS  Google Scholar 

  24. F. Amar, R.S. Berry: J. Chem. Phys. (in press).

    Google Scholar 

  25. T.L. Beck, J. Jellinek, R.S. Berry (in preparation).

    Google Scholar 

  26. S. Nosé: Mol. Phys. 52, 255 (1984)

    Article  ADS  Google Scholar 

  27. J. Chem. Phys. 81, 511 (1984).

    Google Scholar 

  28. T.E. Gough, D.G. Knight, G. Scoles: Chem. Phys. Lett. 97, 155 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berry, R.S. (1987). Melting and Freezing of Microclusters from Analytics and Simulations. In: Sugano, S., Nishina, Y., Ohnishi, S. (eds) Microclusters. Springer Series in Materials Science, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83064-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83064-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83066-2

  • Online ISBN: 978-3-642-83064-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics