Microclusters pp 152-160 | Cite as

Total Energy Surfaces: (S8)n

  • T. P. Martin
  • T. Bergmann
  • B. Wassermann
Conference paper
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 4)

Abstract

Although clusters are now routinely observed in mass spectrometers, their most fundamental property, their structure, is still essentially unknown /1/. This is a particularly frustrating state of affairs for the theorists, who, if given the structure, can use their sophisticated methods to calculate the electronic and vibrational properties of clusters. Since experimental investigations have not yet provided much structural information, the theorists have been forced to attack the problem themselves. However, it may be a task which is just beyond the present state of the art. This situation can be contrasted to that which exists in solid state physics where precise structural data is available. One can imagine the confusion which would exist today if the solid state physicist would still have to rely on total energy calculations for the determination of complicated crystal structures. It was the development of diffraction techniques that finally allowed rapid advances in solid state physics. Cluster science awaits a similar breakthrough. In the meantime the cluster theorist faces a challenge even more difficult than that of the solid state physicist. Rather than examining a small set of structures, a vast multidimensional total energy surface must be mapped out and examined /2–4/.

Keywords

Entropy Diene Halide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The proceedings of three international conferences on clusters published in: J. Phys. (Paris), Suppl.C2 (1977); Surf. Sci. 106 (1981); 156 (1985)Google Scholar
  2. 2.
    M.R. Hoare: Adv. Chem. Phys. 40, 49 (1979)CrossRefGoogle Scholar
  3. 3.
    T.P. Martin: Phys. Rep. 95, 177 (1983)CrossRefADSGoogle Scholar
  4. 4.
    F.H. Stillinger and T. A T Weber: Science 225, 983 (1984); Phys. Rev. A 25, 978 (1982); 28, 2408 (1983)CrossRefADSGoogle Scholar
  5. 5.
    J. Koutecky and P. Fantucci: Chem. Rev. (1986)Google Scholar
  6. 6.
    J. Flad, G. Igel-Mann, H. Preuss and H. Stoll: Surf. Sci. 156, 379 (1985)CrossRefADSGoogle Scholar
  7. 7.
    P.S. Bagus, C.J. Nelin and C.W. Bauschlicher, jr.: Surf. Sci 156, 615 (1985)CrossRefADSGoogle Scholar
  8. 8.
    C.L. Briant and J.J. Burton: J. Chem. Phys. 63, 2045 (1975)CrossRefADSGoogle Scholar
  9. 9.
    R.D. Etters and J. Kaelberer: J. Chem. Phys. 66, 5112 (1977)CrossRefADSGoogle Scholar
  10. 10.
    E.E. Polymeropoulos and J. Brickmann: Chem. Phys. Letters 92 59 (1982)CrossRefADSGoogle Scholar
  11. 11.
    J. Farges, M.F. Feraudy, B. Raoult and G. Torchet, Surf. Sci. 106, 95 (1981)CrossRefADSGoogle Scholar
  12. 12.
    E. B1aisten-Barojas and H.C. Andersen: Surf. Sci. 156, 548 (1985)CrossRefADSGoogle Scholar
  13. 13.
    T.P. Martin: J. Chem. Phys. 67, 5207 (1977)CrossRefADSGoogle Scholar
  14. 14.
    D.O. Welch, O.W. Lazareth, G.J. Dienes, R.D. Hatcher: J. Chem. Phys. 68, 2159 (1978)CrossRefADSGoogle Scholar
  15. 15.
    B.I. Dunlap: J. Chem. Phys. 84, 5611 (1986)CrossRefADSGoogle Scholar
  16. 16.
    F.H. Stillinger and A. Rahman : J. Chem. Phys. 60, 1545 (1974)CrossRefADSGoogle Scholar
  17. 17.
    J.R. Reimers and R.O. Watts: Chem. Phys. 85, 83 (1984)ADSGoogle Scholar
  18. 18.
    V. Carravetta and E. Clementi: J. Chem. Phys. 81, 2646 (1984)CrossRefADSGoogle Scholar
  19. 19.
    I.P. Buffey and W. Byers Brown: Chem. Phys. Lett. 109, 59 (1984)CrossRefADSGoogle Scholar
  20. 20.
    M.J. Ondrechen, Z. Berkovitch-Yel1in and J. Jortner: J. Am. Chem. Soc. 103, 6586 (1981)Google Scholar
  21. 21.
    B.W. van de Waal: J. Chem. Phys. 79, 3948 (1983)CrossRefADSGoogle Scholar
  22. 22.
    R. Steudel, R. Strauss and L. Koch: Angew. Chem. Int. Ed. Engl. 24, 59 (1985)CrossRefGoogle Scholar
  23. 23.
    R. Steudel: Nova Acta Leopoldina 59, 231 (1985)Google Scholar
  24. 24.
    E. B1 ai sten-Ba rojas: to be publishedGoogle Scholar
  25. 25.
    T.P. Martin: J. Chem. Phys. 81, 4426 (1984)CrossRefADSGoogle Scholar
  26. 26.
    R.P. Rinaldi and G.S. Pawley: J. Phys. C 8, 598 (1975)ADSGoogle Scholar
  27. 27.
    J. Stoer: Einführung in die Numerische Mathematik I; 3rd ed. (Springer, Berlin, Heidelberg 19/9)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • T. P. Martin
    • 1
  • T. Bergmann
    • 1
  • B. Wassermann
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Fed. Rep. of Germany

Personalised recommendations