Advertisement

Structural Optimization Using Optimality Criteria

  • L. Berke
  • N. S. Khot
Part of the NATO ASI Series book series (volume 27)

Abstract

First, the historical background leading to the optimality criteria approach is discussed pointing out the role of the traditional design methods on one hand, and Prager’s work based on variational principles on the other hand as the two motivating influences. This is followed by the formal development of the method utilizing the separability properties of discretized structures or models. The importance of the single constraint case is pointed out and the associated particularly simple yet powerful optimality criteria is presented followed by extension to multiple constraints. Examples are used to illustrate the approach for displacement, stress and eigenvalue related constraints.

Keywords

Design Variable Optimality Criterion Merit Function Stress Constraint Multiple Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klein, B.: Direct Use of Extremal Principles in Solving Certain Optimizing Problems Involving Inequalities. J. Oper. Res. Soc. Am., vol. 3, 1955, pp. 1. 68–175, 548.Google Scholar
  2. 2.
    Schmidt, L.A.: Structural Design by Systematic Synthesis. Proceedings of the Second Conference on Electronic Computation, ASCE, 1960, pp. 105–132.Google Scholar
  3. 3.
    Razani, R.: Behavior of Fully-Stressed Design of Structures and its Relationship to Minimum Weight Design. AIAA J. vol. 3, no. 12, Dec. 1965, pp. 2262–2268.CrossRefGoogle Scholar
  4. 4.
    Richer, T.P.: Optimum Design-Minimum Weight Versus Fully- Stressed. J. Struct. Div. Am. Soc. Civ. Eng., vol. 92, no. ST6, Dec. 1966, pp. 265–279.Google Scholar
  5. 5.
    Melosh, R.J.: Convergence in Fully-Stressed Designinq. Symposium on Structural Optimization, AGARD CP-36, 1969, pp. 7–1 to 7–15.Google Scholar
  6. 6.
    Prager, W.; and Taylor, J.E.: Problems of Optimal Structural Design, J. Appl. Mech., vol. 90, no. 1, Mar. 1968, pp. 102–106.CrossRefGoogle Scholar
  7. 7.
    Venkayya, V.B.; Khot, N.S.; and Reddy, V.S.: Energy Distribution in an Optimum Structural Design. AFFDL-TR-68- 156, Sept. 1968.Google Scholar
  8. 8.
    Taylor, J.E.: The Strongest Column: An Energy Approach. J. Appl. Mech., vol. 89, no. 2, June 1967, pp. 486–487.CrossRefGoogle Scholar
  9. 9.
    Sheu, C.Y.; and Prager, W.: Recent Developments in Optimal Structural Design. Appl. Mech. Rev., vol. 21, no. 10, Oct. 1968, pp. 985–992.Google Scholar
  10. 10.
    Prager, W.; and Shield, R.T.: Optimal Design of Multipurpose Structures, Int. J. Solids Struct., vol. 4, no. 4, 1968, pp. 469–475.CrossRefGoogle Scholar
  11. 11.
    Sheu, C.Y.; and Prager, W.: Minimum-Weight Desiqn with Piecewise Constant Specific Stiffness, Journal of Optimization Theory and Application, vol. 2, no. 3, Mav 1968, pp. 179–186.Google Scholar
  12. 12.
    Prager, W.: Optimization of Structural Desiqn. Journal of Optimization Theory and Applications, vol. 6, no. 1, July 1970, pp. 1–21.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Shield, R.T.; and Prager, W.: Optimal Structural Desiqn for Given Deflection, A. Anqew. Math. Phys., vol. 21, no. 4, 1970, pp. 513–523.MATHGoogle Scholar
  14. 14.
    Berke, L: An Efficient Approach to the Minimum Weight Design of Deflection Limited Structures. AFFDL-TM-70-4, 1970.Google Scholar
  15. 15.
    Gellatly, R.A.; and Berke, L.: Optimum Structural Design. AFFDL-TR-70-165, Apr. 1971.Google Scholar
  16. 16.
    Prager, W.; and Marcal, P.V.: Optimality Criteria in Structural Design, AFFDL-TR-70-166, May 1971.Google Scholar
  17. 17.
    Venkayya, V.B., etal.: Design of Optimum Structures for Dynamic Loads. Proceedings of the Third Conference on Matrix Methods in Structural Mechanics, R.M. Bader, et al., eds.. Air Force Flight Dynamics Lab, Oct. 1971.Google Scholar
  18. 18.
    Berke, L.: Convergence Behavior of Iterative Resizing Procedures Based on Optimality Criteria. AFFDL-TM-72-1- FBR, 1972.Google Scholar
  19. 19.
    Gellatly, R.A.; and Berke, L.: Optimality-Criter ion Based Algorithm. Optimum Structural Design, R.H. Gallagher, and O.C. Zienkiewicz, eds., John Wiley & Sons, 1972, np. 33–49.Google Scholar
  20. 20.
    Kiusalaas, J.: Minimum Weight Design of Structures Via Optimality Criteria. NASA TN D-7115, 1972.Google Scholar
  21. 21.
    Nagtegaal, J.C.: A New Approach to Optimal Design of Elastic Structures. Comput. Methods Appl. Mech. Enq., vol. 2, no. 3, July-Aug. 1973, pp. 255–264.Google Scholar
  22. 22.
    Khot, N.S., et al.: Application of Optimality Criterion to Fiber Reinforced Composites. AFFDL-TR-73-6, May 1973.Google Scholar
  23. 23.
    Venkayya, V.B.; Khot, N.S.; and Berke, L.: Application of Optimality Criteria Approaches to Automated Design of Large Practical Structures. Second Symposium on Structural Optimization, AGARD-CP-123, 1973, pp. 3–1 to 3–19.Google Scholar
  24. 24.
    Khot, N.S., et al.: Optimization of Fiber Reinforced Composite Structures. Int. J. Solids Struct, vol. 9, no. 10, 1973, pp. 1225–1236.CrossRefGoogle Scholar
  25. 25.
    Khot, N.S.; Venkayya, V.B.; and Berke, L.: Optimization and Structures for Strenqth and Stability Requirements. AFFDL-TR-73-98, Dec. 1973.Google Scholar
  26. 26.
    Prager, W.: Minimum Weight Design of Statically Determinate Truss Subject to Constraints on Compliance, Stress, and Cross-Sectional Area. J. Appl. Mech., vol. 40, no. 1, Mar. 1973, pp. 313–314.CrossRefGoogle Scholar
  27. 27.
    Kiusalaas, J.: Optimal Design of Structures with Buckling Constraints. Int. J. Solids Struct., vol. 9, no. 7, 1973, pp. 863–878.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Berke, L.: and Khot, N.S.: Use of Optimality Criteria Methods for Large Scale Systems. Structural Optimization, AGARD-LS-70, 1974, pp. 1–1 to 1–29.Google Scholar
  29. 29.
    Berke, L.: and Venkayya, V.B.: Review of Optimality Criteria Approaches to Structural Optimization. Structural Optimization Symposium, L.A. Schmit, ed., ASME, New York, 1974, pp. 23–34.Google Scholar
  30. 30.
    Wilkinson, K.; Lerner, E.; and Taylor, R.F.: Practical Design of Minimum Weight Aircraft Structures for Strength and Flutter Requirements. AIAA Paper 74–986, Aug. 1974.Google Scholar
  31. 31.
    Venkayya, V.B.; and Khot, N.S.: Design of Optimum Structures to Impulse Type Loading. AIAA J., vol. 13, no. 8, Aug. 1975, pp. 989–994.MATHCrossRefGoogle Scholar
  32. 32.
    Khot, N.S.; Venkayya, V.B.; and Berke, L.: Optimum Structural Design with Stability Constraints. Int. J. Numer Methods Eng., vol. 10, no. 5, 1976, pp. 1097–1114.MATHCrossRefGoogle Scholar
  33. 33.
    Khot, N.S.; Venkayya, V.B.; and Berke, L.: Optimum Design of Composite Structures with Stress and nisplacement Constraints. AIAA J., vol. 14, no. 2, Feb. 1976, pp. 131–132.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Rizzi, P.: Optimization of Multi-Constrained Structures Based on Optimality Criteria. 17th Structures, Structural Dynamics, and Materials Conference, AIAA, 1976, pp. 448–462.Google Scholar
  35. 35.
    Segenreich, S.A.; and Mcintosh, S.C., Jr.: Weight Optimization Under Multiple Equality Constraints Using an Optimality Criteria. 17th Structures, Structural Dynamics, and Materials Conference, AIAA, 1976, Additional Paper No. 3.Google Scholar
  36. 36.
    Dobbs, M.W.; and Nelson, R.B.: Application of Optimality Criteria to Automated Structural Desiqn. AIAA J., vol. 14, no. 10, Oct. 1976, pp. 1436–1443.CrossRefGoogle Scholar
  37. 37.
    Taylor, J.E.; and Rossow, M.P.V; Optimal Structural Desiqn Algorithm Using Optimality Criteria. Advances in Engineering Science, vol. 2, NASA CP-2001-vol-2, 1976, pp. 521–530.Google Scholar
  38. 38.
    Khot, N.S., et al.: Optimum Design of Composite Wing Structures With Twist Constraint for Aeroelastic Tailoring. AFFDL-TR-76-117, Dec. 1976.Google Scholar
  39. 39.
    Khot, N.S.; Venkayya, V.B.; and Berke, L.: Experiences with Minimum Weight Design of Structures Using Optimality Criteria Methods. 2nd International Conference on Vehicle Structural Mechanics, SAE-P-71, Society of Automotive Engineers, 1977, pp. 191–201.Google Scholar
  40. 40.
    Wilkinson, K., et al: FASTOP: A Flutter and Strength Optimization Program for Lifting-Surface Structures, J. Aircr., vol. 4, no. 6, June 1977, pp. 581–587.CrossRefGoogle Scholar
  41. 41.
    Sanders, G.; and Fleury, C.: A Mixed Method in Structural Optimization. Int. J. Numer. Methods Enq., vol. 13, no. 2, 1978, pp. 385–404.CrossRefGoogle Scholar
  42. 42.
    Berke, L.; and Khot, N.S.: A Simple Virtual Strain Energy Method to Fully Stress Design Structures With Dissimilar Stress Allowables and Material Properties. AFFDL-TM-77- 28-FBR, Dec. 1977.Google Scholar
  43. 43.
    Khan, M.R.; Willmert, K.D.; and Thornton, W.A.: A New Optimality Criterion Method for Large Scale Structures. 19th AIAA/ASME/SAE Structures, Structural Dynamics and Materials Conference, AIAA, 1978, pp. 47–58.Google Scholar
  44. 44.
    Isakson, G., et al.: ASOP-3: A Program for Optimum Structural Design to Satisfy Strength and Deflection Constraints, J. Aircr., vol. 15, no. 7, July 1978, pp. 422–428.CrossRefGoogle Scholar
  45. 45.
    Markowitz, J.; and Isakson, G.: FASTOP-3: A Strength, Deflection and Flutter Optimization Program for Metallic and Composite Structures, Vol. I Theory and Application, Vol. II - Program User’s Manual, AFFDL-TR-78-50, May 1978.Google Scholar
  46. 46.
    Haug, E.J.; and Arora, J.S.: Applied Optimal Desiqn, Wilev-Interscience, 1979, p. 215.Google Scholar
  47. 47.
    Schmidt, L.A., Jr.; and Fleury, C.: An Improved Analysis/ Synthesis Capability Based on Dual Methods - ACCESS 3. 20th Structures, Structural Dynamic and Materials Conference, AIAA, 1979, pp. 23–50.Google Scholar
  48. 48.
    Fleury, C.; and Schmit, L.A. Jr.: Dual Methods and Approximation Concepts in Structural Synthesis. NASA CR-3226, 1980.Google Scholar
  49. 49.
    Khot, N.S.; Berke, L.; and Venkayya, V.B.: Minimum Weight Design of Structures by the Optimality Criterion and Projection Method. 20th Structures, Structural Dynamics and Materials Conference, AIAA, 1979, pp. 11–22.Google Scholar
  50. 50.
    Lerner, E.: The Application of Practical Optimization Techniques in the Preliminary Structural Design of a Forward-Swept Wing. Second International Symposium on Aeroelasticity and Structural Dynamics, Deutsche Gesellschaft fuer Luft- und Raumfahrt, Bonn, Germany, 1985, po. 381–392.Google Scholar
  51. 51.
    Lerner, E.; and Markowitz, J.: An Efficient Structural Resizing Procedure for Meeting Static Aeroeleastic Design Objectives. J. Aircr., vol. 16, no. 2, Feb. 1979, pp. 65–71.Google Scholar
  52. 52.
    Cross, H. t The Relation of Analysis to Structural Design, Am. Soc. Civ. Eng. Proc., vol. 61, no. 8, Oct. 1935, pp. 1119–1130; and vol. 61, no. 10, pt. 1, Dec. 1935, pp. 1551–1557.Google Scholar
  53. 53.
    Khot, N.S.: Berke, L.: and Venkayya, V. B. s Comparison of Optimality Criteria Algorithms for Minimum Weight Design of Structures, AIAA J., Vol. 17, no. 2, Feb. 1979, pp. 182–190.Google Scholar
  54. 54.
    Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, 1982, p. 104.MATHGoogle Scholar
  55. 55.
    Gellatly, R.A.; and Berke, L.: A Preliminary Study of a New Approach to the Optimization of Strength Limited Structures, AFFDL-TM-75-162-FBR, Sept. 1975.Google Scholar
  56. 56.
    Gellatly, R.A.; and Thorn, R.D.: Force Method Optimization, AFWAL-TR-80-3006, Feb. 1980.Google Scholar
  57. 57.
    Gellatly, R.A.; and Thorn, R.D.: Optimality Criteria Using a Force Method of Analysis Approach. Foundations of Structural Optimizations A Unified Approach. A.J. Morris, ed., Wiley-Interscience, 1982, pp. 237–272.Google Scholar
  58. 58.
    Adelman, H.M.; Haftka, R.T.; and Tsach, U.: Application of Fully Stressed Design Procedures to Redundant and Non-Isotropic Structures, NASA TM-81842, 1980.Google Scholar
  59. 59.
    Walsh, J.: Application of Mathematical Optimization Procedures to a Structural Model of a Large Finite- Element Wing, NASA TM-87597, 1986.Google Scholar
  60. 60.
    Prager, W. s Unexpected Results in Structural Optimization, J. Struct. Mech., vol. 9, no. 1, 1981, pp. 71–90.Google Scholar
  61. 61.
    Khot, N.S.: Optimization of Structures with Multiple Frequency Constraints. Comput Struct., vol. 20, no. 5, 1985, pp. 869–876.MATHCrossRefGoogle Scholar
  62. 62.
    Khot, N.S.: and Kamat, M.P.: Minimum Weight Design of Truss Structures with Geometric Nonlinear Behavior. AIAA J., vol. 23, no. 1, Jan. 1985, pp. 139–144.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • L. Berke
    • 1
  • N. S. Khot
    • 2
  1. 1.National Aeronautics and Space Administration, Lewis Research CenterClevelandUSA
  2. 2.Air Force Wright Aeronautical LaboratoriesWright-Patterson Air Force BaseUSA

Personalised recommendations