Take-Off in Optimum Structural Design

  • H. R. E. M. Hörnlein
Part of the NATO ASI Series book series (volume 27)


This paper is intended for the potential developer and user of structural design software. A great number of recent publications have had a strong influence on the development and improvement of structural design software. New ideas have to be studied, realized and tested to develop or to use a state-of-the-art program. In this report I have attempted to make comments on some of the basic ideas. The practical knowledge and experience gained during the development of our in-house programming system, which is designated LAGRANGE, were taken into consideration. The features of about 30 internationally used program systems for structural design are listed in the appendix.


Design Variable Structural Optimization Sequential Quadratic Programming Active Constraint Geometric Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.S. Arora, E.J. Haugs(1979) ‘Methods of design sensitivity analysis in stuctural Optimization’ AIAA J., Vol. 17,No. 9, pp. 970–974.MathSciNetCrossRefGoogle Scholar
  2. [2]
    H. Ashley(1982) ‘On Making Things The Best-Aeronautical uses of optimization’ J. of aircraft, vol. 19, No. 1, pp. 5–28.MathSciNetCrossRefGoogle Scholar
  3. [3]
    H. Baier (1978) ‘Mathemat ische programmierung zur optimierung von tragwerken insbesondere bei mehrfachen zielen’ Doctoral dissertation, Th Darmstadt,Germany.Google Scholar
  4. [4]
    P. Bartholomew (1979) ‘A Dual bound used for monitoring structural optimization Problems’ Engng. Optimization, Vol. 4, pp. 45–50.CrossRefGoogle Scholar
  5. [5]
    A. D. Belegundu, J. S. Arora (1984) ‘A Computational Study of Transformation Methods for Optimal Design’ AIAA J.,Vol. 22,No. 4, pp. 535–542.MATHCrossRefGoogle Scholar
  6. [6]
    A. D. Belegundu, J. S. Arora (1985) ‘A Study of Mathematical Programming Methods for Structural Optimization. Part I: Theory/Part II: Numerical Results’ Int. J. Num. Meth. Engng.,Vol. 21, pp. 1583–1599/pp. 1601–1623.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    M. P. Bendsoe, N. Olhoff, J. E. Taylorsi (1984) ‘A Variational Formulation for Multicriteria Structural Optimization’ J. Struct. Mech., Vol. 11, No. 4, Pp. 523–544.Google Scholar
  8. [8]
    L. Berke, V. B. Venkayya (1984) ‘Review of Optimality Criteria Approaches to Structural Optimization’ Asme Struct. Opt. Symp., Editor L. A. Schmit, pp. 23–34.Google Scholar
  9. [9]
    M. E. Botkin, J. A. Bennett (1984), ‘Shape Optimization of Three-Dimensional Folded Plate Structures’ AIAA J.,Vol. 23,No. 11, Pp. 1804–1810.CrossRefGoogle Scholar
  10. [10]
    V. Braibant, C. Fleury (1984) ‘Shape Optimal Design — A Performing Cad Oriented Formulation’ Report Sa-114, University of Liege,Belgium.Google Scholar
  11. [11]
    V. Braibant, C. Fleury(1984) ‘An Approximation Concepts Approach to Shape Optimal Design’ Report Sa-112, Univ. of Liege, Belgium.Google Scholar
  12. [12]
    D. G. Carmichael (1981) ‘Multicriteria Optimization’ Chapter 10 in Ref. [84].Google Scholar
  13. [13]
    K. K. Choi, E. J. Haug (1983) ‘Shape Design Sensitivity Analysis’ J. Struct. Mech.,Vol. 11,No. 2,pp. 231–269.MathSciNetCrossRefGoogle Scholar
  14. [14]
    C. T. Chon (1984) ‘Design Sensitivity Analysis — Strain Energy via Distribution’ AIAA J., Vol. 22, NO. 4.Google Scholar
  15. [15]
    K. Dems. Z. Mroz(1985)Variational Approach To First-And Second order Sensitivity Analysis Of Elastic Structures’ Int. J. Num. Meth. Engng., Vol. 21, pp. 637–661.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    K. Dems, Z.Mroz(1983/1984)Variational Approach By Means Of Adjoint Systems To Structural Optimization & Sensitivity Analysis. Part I: Variation Of Material Paramater Within Fixed Domain/Part II: Structural Shape Variation’ Int. J. Solids & Struct.,Vol. 19,No. 8, pp. 677–692/Vol. 20, No. 6, pp. 527–552.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    U. S. Dorn, R.E. Gomory, H. J. Greenberg(1964) ‘Automatic Design of Optimal Structures’ Journal De Mecanique, vol.3, No. 1, pp. 25–52.Google Scholar
  18. [18]
    H. Eschenauer (1985) ‘Rechnerische und Experimentelle Untersuchungen zur Strukturoptimierung von Bauweisen’ Forschungsbericht Der DFG Des Inst. Fuer Mechanik und Regelungstechnik Der Universitaet-Gesamthochschule Siegen, pp. 9–22.Google Scholar
  19. [19]
    B. J. D. Esping (1983) ‘A Cad Approach to the Minimum Weight Design Problem’ Report 83–14, Royal Inst. of Techn. Stockholm, Sweden.Google Scholar
  20. [20]
    B. J. D. Esping (1983) ‘Analytical Derivatives of Structural Matrices for an Eight Node Parametric Membran Element With Respect to a set of Design Variables’ Report 83–7, Royal Inst. of Technology Stockholm, Sweden.Google Scholar
  21. [21]
    J. E. Falk (1967) ‘Lagrange Multipliers and Nonlinear Programming’ J. Math. Anal. Appl.,vol. 19,pp. 141–159.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    C. Fleury (1985) ‘Shape Optimal Design by the Convex Linearization Method’ Int. Symp. ‘The Optimum Shape: Automated Structural Design’, Warren, Michigan.Google Scholar
  23. [23]
    C. Fleury,V. Braibanty (1984) ‘Structural Optimization-A New Dual Method Using Mixed Variables’ Report Sa-115, Univ. of Liege, Belgium.Google Scholar
  24. [24]
    C. Fleury, G. Sanders 1983 ) ‘Dual Methods for Optimizing Finite Element Flexural Systems’ Comp. Meth. Appl. Mech. Engng.,vol. 37, pp. 249–275.MATHCrossRefGoogle Scholar
  25. [25]
    C. Fleury(1982) ‘Reconciliation of Mathematical Programming and Optimality Criteria Methods’ Chapter 10 In Ref. [91].Google Scholar
  26. [26]
    C. Fleurytl. A. Schmit (1980) ‘Dual Methods and Approximation Concepts in Structural Synthesis’ Nasa Report 3226, Univ. Calif., La.Google Scholar
  27. [27]
    C. Fleury (1979) ‘Structural Weight Optimization by Dual Methods of Convex Programming’ Int. J. Num. Meth. Engng.,Vol. 14, pp. 1761–1783.MATHCrossRefGoogle Scholar
  28. [28]
    C. Fleuryrm. Geradint (1978) ‘Optimality Criteria and Mathematical Programming in Structural Weight Optimization’ Comp. A Struct., Vol. 8, pp. 7–17.CrossRefGoogle Scholar
  29. [29]
    C. Fleury, G. Sanders (1977) ‘Relationships Between Optimality Criteria and Mathematical Programming in Structural Optimization’ Proc. Symp. Appl. Comp. Meth. Engng., Univ. Of Southern Calif., pp. 507–520.Google Scholar
  30. [30]
    R. A. Gellatly (1972) ‘Survey of the State-of-the-Art of Optimization Technology within Nato Countries’ Agard Working Group on Optimization, pp. 2. 1–2. 20.Google Scholar
  31. [31]
    R. T. Haftka(1982) ‘Second Order Sensitivity Derivatives in Structural Optimization’ AIAA J., vol. 20,pp. 1765–1766.MATHCrossRefGoogle Scholar
  32. [32]
    E. J. Haug (1981) ‘Second Order Design Sensitivity Analysis of Structural Systems’ AIAA J., vol. 19,No. 8,pp. 1087–1088.CrossRefGoogle Scholar
  33. [33]
    W. S. Hemp(1964) ‘Studies in the Theory of Michel Structures’ Proc. Int. Cong., Appl. Mech./Munich.Google Scholar
  34. [34]
    O. F. Hughes,F. Mistree,V. Zanic (1980) ‘A Practical Method for Rational Design of Ship Structures’ J. Ship Res.,vol. 24,No. 2, pp. 101–113.Google Scholar
  35. [35]
    A. H. Jawed (1985) ‘Sensitivity Applications in Structural Design Synthesis’ Ph. D. Thesis, Cranfield Inst. Techn., College of Aeronautics Aircraft Design Division, U. K.Google Scholar
  36. [36]
    A. H. Jawed, A. J. Morris (1985) ‘Higher-Order Updates for Dynamic Response in Structural Optimization’ Comp. Meth. Appl. Mech. Engng., vol. 49, No. 2, pp. 175–201.MATHCrossRefGoogle Scholar
  37. [37]
    D. W. Kelly, A. J. Morris, P. Bartholomew (1977) ‘A Review of Techniques for Automated Structural Design’ Comp. Meth. Appl. Mech. Engng., Vol. 12, Pp. 219–242.MATHCrossRefGoogle Scholar
  38. [38]
    W. Lansing,E. Lerner,R. F. Taylor(1977) ‘Applications of Structural Optimization for Strength and Aeroelastic Design Requirements’ Agard Report No. 664, 45Th Struct. and Materials Panel Meeting, Voss, Norway.Google Scholar
  39. [39]
    K. I. Majid, D. M. C. Elliott(1973) ‘Topological Design of Pin Jointed Structures by Non-Linear Programming’ Proc. Inst. Civil. Engrs., vol. 55, Part 2, pp. 129–149,London.Google Scholar
  40. [40]
    J. C. Maxwell (1869) Scientific Papers, vol. 2, P. 175, Cambridge Univ. Press.Google Scholar
  41. [41]
    A. G. M. Michell (1904) ‘The Limits of Economy of Material in Framed Structures’ Phil. Mag., Series 6,vol. 8,Pp. 589–597.Google Scholar
  42. [42]
    A. J. Morris (1982) ‘Structural Optimization by Geometric Programming’ Chapter 17 In Ref. [91].Google Scholar
  43. [43]
    A. J. Morris (1978) ‘Generalization of Dual Structural Optimization Problems in Terms of Fractional Programming’ Quarterly of Appl. Math., Vol. 36, No. 2.Google Scholar
  44. [44]
    A. J. Morris (1973) ‘The Optimization of Statically Indeterminate Structures by Means of Approximate Geometric Programming’ Agard 2Nd Symp. on Struct. Opt.,Cp-123, Milan.Google Scholar
  45. [45]
    F. I. Niordson, P. Pederson (1973) ‘A Review of Optimal Structural Design’ Proc. 13Th Int. Cong. Theory & Appl. Mech., Pp. 264–278, Moscow, Springer-Verlag.Google Scholar
  46. [46]
    N. Olhoff, J. E. Taylors (1983) ‘On Structural Optimization’ J. Appl. Mech., vol. 50, pp. 1139–1151.MATHCrossRefGoogle Scholar
  47. [47]
    O. E. Lev (1981) ‘Structural Optimization Recent Developments And Applications’ ASCE, Isbn 0–87262–281–9Google Scholar
  48. [48]
    A. C. Palmer (1968) ‘Optimal Design by Dynamic Programming’ J. Struct. Div., ASCE, vol. 94, No. 8.Google Scholar
  49. [49]
    P. Pedersen, A. P. Seyranians (1983) ‘Sensitivity Analysis for Problems of Dynamic Stability’ Int. J. Solids & Struct.,vol. 19,No. 4, pp. 315–335.MATHCrossRefGoogle Scholar
  50. [50]
    P. Pedersen (1973) ‘Optimal Joint Positions For Space Trusses’ J. Struct. Div. ASCE, Vol. 99, No. 12, pp. 2459–2476.Google Scholar
  51. [51]
    B. Prasad (1983) ‘Potential Forms of Explicit Constraint Approximations in Structural Optimization — Part 1: Analysis and Projections/Part 2: Numerical Experience’ Comp. Meth. Appl. Mech. Engng., vol. 40, pp. 1–26/Vol. 46, pp. 15–38.CrossRefGoogle Scholar
  52. [52]
    L. X. Qian (1982) ‘Structural Optimization Research in China Proc. Int. Conf. on Finite Element Meth.’, pp. 16–24, Shanghai. China.Google Scholar
  53. [53]
    G. I. N. Rozvany (1984) ‘Structural Layout Theory — The Present State Of Knowledge’ Chapter 7 In Ref. [83].Google Scholar
  54. [54]
    G. I. N. Rozvany, Z. Mroz (1977) ‘Analytical Methods in Structural Optimization’ Appl. Mech. Reviews, vol. 30,No. 11. pp. 1461–1470.Google Scholar
  55. [55]
    C. S. Rudisill, K. G. Bhatia (1972) ‘Second Derivatives of Flutter Velocity and the Optimization of Aircraft Structures’ AIAA J., vol. 10, No. 12, pp 1569–1572.CrossRefGoogle Scholar
  56. [56]
    C. S. Rudisill, K. G. Bhatia (1971) ‘Optimization of Complex Structures to Satisfy Flutter Requirements’ AIAA J.,Vol. 9, No. 8.Google Scholar
  57. [57]
    K. Schittkowskis (1980) ‘Nonlinear Programming Codes. Information, Test, Performance’ Lecture Notes in Economics and Mathematical Systems, Springer-Verlag.Google Scholar
  58. [58]
    L. A. Schmit, K. J. Chang (1984) ‘A Multi-Level Method for Structural Synthesis’ 25Th AIAA/Asme/Asce/Ahs Stuctures, Structural Dynamics and Material Conf., Palm Springs.Google Scholar
  59. [59]
    L. A. Schmit, K. J. Changs7984) ‘Optimum Design Sensitivity Based on Approximation Concepts and Dual Methods’ Int. J. Num. Meth. Engng., vol. 20.Google Scholar
  60. [60]
    L. A. Schmit (1981) ‘Structural Synthesis its Genesis and Development’ AIAA J., vol. 19, No. 10, pp. 1249–1263.CrossRefGoogle Scholar
  61. [61]
    L. A. Schmit, C. Fleury (1980) ‘Stuctural Synthesis by Combining Approximation Concepts and Dual Methods’ AIAA J., vol. 18,No. 10, pp. 1252–1260.MathSciNetMATHCrossRefGoogle Scholar
  62. [62]
    L. A. Schmit, C. Fleury (1980) ‘Discrete-Continuum Variable Structural Synthesis Using Dual Methods’ AIAA J.,vol. 18,No. 12, pp. 1515–1524.MathSciNetMATHCrossRefGoogle Scholar
  63. [63]
    L. A. Schmit, B. Farshi (1974)‘Some Approximation Concepts for Stuctural Synthesis’ AIAA J.,vol. 12, No. 5,pp. 692–699.Google Scholar
  64. [64]
    L. A. Schmit,R. H. Mallet (1974) ‘Structural Synthesis and Design Parameter Hierarchy’ J. Struc. Div. ASCE,vol,89,No, 4, pp. 269–299.Google Scholar
  65. [65]
    C. F. Sheffey(1960) ‘Optimization Of Structures by Variation of Critical Parameters’ Proc. 2Nd Nat. Conf. Struc. Div. ASCE, pp. 133–144.Google Scholar
  66. [66]
    C. Y. Sheu, W. Prager (1968) ‘Recent Development in Optimal Structural Design’ Appl. Mech. Reviews, vol. 21,No. 10,pp. 985–992.Google Scholar
  67. [67]
    C. A. N. Soares, H. C. Rodrigues, L. M. O. Faria (1983) ‘Boundary Elements in the Shape Optimal Design of Shafts’ Conf. Optimization in Cad, Group 5. 2,Lyon.Google Scholar
  68. [68]
    J. Sobieski, B. B. James,M. F. Riley (1985) ‘Stuctural Optimizition by Generalized, Multilevel Optimization’ AIAA/ASME/ASCE/AHS 26Th Structures, Structural Dynamics and Material Conf.,Orlando,Florida.Google Scholar
  69. [69]
    J. Sobieski, J-F. M. Barthelemy, K. M. Riley (1982) ‘Sensitivity of Optimum Solutions to Problem Parameters’ AIAA J.,vol. 20,No. 9, pp. 1291–1299.MathSciNetMATHCrossRefGoogle Scholar
  70. [70]
    W. Stadler (1984) ‘Multiciteria Optimization in Mechanics (A Survey)’ Appl. Mech. Review, vol. 37, No. 3,pp. 277–286.Google Scholar
  71. [71]
    K. Svanberg (1982) ‘An Algorithm for Optimum Structural Design using Duality’ Math. Progr. Study, vol. 20, pp. 161–177.MATHGoogle Scholar
  72. [72]
    A. B. Templeman (1979) ‘Optimal Sizing of Large Engineering Systems by Separable Duals’ Math. Pror. Study, vol. 11, pp. 108–115.MATHGoogle Scholar
  73. [73]
    A. B. Templeman (1976) ‘A Dual Approach to Optimum Truss Design’ J. Struct. Mechvol. 4, No. 3, pp. 235–255.CrossRefGoogle Scholar
  74. [74]
    A. B. Templeman (1970) ‘Structural Design for Minimum Cost using the Method of Geometric Programing’ Proc. Ice, vol. 46, pp. 459–472.CrossRefGoogle Scholar
  75. [75]
    B. H. V. Toppingcmj; ‘Shape Optimization of Skeletal Structures-A Review’ ASCE J. Struct. Engng.,vol. 109, pp. 1933–1951.Google Scholar
  76. [76]
    G. N. Vanderplaats, N. Yoshida (1984) Efficient Calculation of Optimum Design Sensitivity’ AIAA Paper 84-0855.Google Scholar
  77. [77]
    G. N. Vanderplaats (1981) ‘Structural Optimization-Past, Present and Future’ AIAA J., vol. 20, No. 7, pp. 992–1000.MathSciNetCrossRefGoogle Scholar
  78. [78]
    G. N. Vanderplaats (1980) ‘Comments on: Methods of Design Sensitivity Analysis in Structural Optimization’ AIAA J., vol. 18,NO11, pp. 1406–1408.Google Scholar
  79. [79]
    G. N. Vanderplaats, F. Moses (1972) ‘Automated Design of Trusses for Optimum Geometry’ J. Struct. Div. ASCE,vol. 89,No. 6, pp. 671–690.Google Scholar
  80. [80]
    V. B. Venkayya(1978) Structural Optimizations Review and Some Recommendations’ Int. J. Num. Meth. Engng.,vol. 13,Pp. 203–228.Google Scholar
  81. [81]
    S. Y. Uang, Y. Sun, R.H. Gallagher (1985) ‘Sensitivity Analysis in Shape Optimization of Continuum Structures’ Comp. & Struct., vol. 20, No. 5, Pp. 855–867.CrossRefGoogle Scholar
  82. [82]
    Z. Wasiutynski, A. Brand (1963) ‘The Present State of Knowledge in the Field of Optimum Design Of Structures’ Appl. Mech. Reviews, vol. 16, No. 5, pp. 341–350.Google Scholar


  1. [83]
    E. Atrek, R. H. Gallagher, K. M. Ragsdell, O. C. Zienkiewicz: Editors (1984) ‘New Directions in Optimum Stuctural Design’ John Wiley & Sons Ltd.Google Scholar
  2. [84]
    D. G. Carmichael (1981) ‘Structural Modelling and Optimization a General Methodology for Engineering and Control’ Ellis Horwood Ltd., Series in Civil Engineering.Google Scholar
  3. [85]
    J. Farkas (1984) ‘Optimum Design Of Metal Structures’ Ellis Horwood Ltd, Publishers.Google Scholar
  4. [86]
    R. H. Gallagher, O. C. Zienkiemicz: Editors (1977,) ‘Optimum Strutural Design — Theory and Applications’ John Wiley & Sons.Google Scholar
  5. [87]
    R. T. Haftka, M. P. Kamat (1985) ‘Elements of Structural Optimization’ Martinus Nijhoff Publishres, Netherlands.MATHGoogle Scholar
  6. [88]
    E. J. Haug,J. S. Arora(1979) ‘Applied Optimal Design /Mechanical and Structural Systems’ John Wiley it Sons.Google Scholar
  7. [89]
    P. Hupfer(1970) ‘Optimierung von Baukonstruktionen’ B. G. Teubner, Stuttgart.Google Scholar
  8. [90]
    U. Kirsch(1981) ‘Optimum Structural Design’ Mc Graw-Hill, Inc.Google Scholar
  9. [91]
    K. I. Majid (1974) ‘Optimum Design Of Structures’ Newnes-Butterworth, London.Google Scholar
  10. [92]
    A. J. Morris: Editor (1982) ‘Foundations of Structural Optimization: A Unified Approach’ John Wiley & Sons.Google Scholar
  11. [93]
    G. V. Reklaites, A. Ravindran, K. M. Ragsdell (1983) ‘Engineering Optimization: Methods and Applications’ John Wiley & Sons.Google Scholar
  12. [94]
    J. N. Siddall (1982) ‘Optimal Engineering Design Principles and Applications’ Marcel Dekk, Inc.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • H. R. E. M. Hörnlein
    • 1
  1. 1.Helicopter and Aircraft GroupMesserschmitt-Bölkow-Blohm GmbhMunich 80W. Germany

Personalised recommendations