Dynamical Instabilities and Transition to Turbulence in Spherical Gap Flows

  • K. Bühler
  • J. Zierep


The transition from laminar to turbulent spherical gap flow is investigated by analysing the dynamical behaviour of the occuring instabilities. The structure of the secondary instabilities is observed by flow visualization. Time-dependent wall shear stress signals are measured at different positions on the outer sphere and analysed to obtain the power spectra. Starting from the different bifurcation solutions different routes of the laminar-turbulent transition are considered.


Reynolds Number Shear Wave Wall Shear Stress Outer Sphere Meridional Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Eppler, H. Fasel: Laminar-Turbulent Transition. Berlin 1980Google Scholar
  2. 2.
    H.L. Swinney, J.P. Gollub: Hydrodynamic Instabilities and the Transition to Turbulence. Top. in Appl. Phys. 45, Berlin 1981Google Scholar
  3. 3.
    G.I. Barenblatt, G. loss, D.D. Joseph: Nonlinear Dynamics and Turbulence. Boston 1983Google Scholar
  4. 4.
    T. Tatsumi: Turbulence and Chaotic Phenomena in Fluids. Amsterdam 1984Google Scholar
  5. 5.
    V.V. Kozlov: Laminar-Turbulent Transition. Berlin 1985Google Scholar
  6. 6.
    P.R. Fenstermacher, H.L. Swinney, J.P. Gollub: Dynamical instabilities and the transition to chaotic Taylor vortex flow. J.F.M. 94, 103–128 (1979)CrossRefGoogle Scholar
  7. 7.
    K. Bühler, J. Zierep: New Secondary Instabilities for High Re-Number Flow Between Two Rotating Spheres. Laminar-Turbulent Transition, ed. Kozlov, Berlin, 677–685 (1985)Google Scholar
  8. 8.
    O. Sawatzki, J. Zierep: Das Stromfeld im Spalt zwischen zwei konzentrischen Kugelflächen, vcn denen die innere rotiert. Acta Mechanica 9, 13–35 (1970)CrossRefGoogle Scholar
  9. 9.
    M. Wimmer: Experiments on a viscous fluid flow between concentric rotating spheres. J.F.M. 78, 317–335 (1976)CrossRefGoogle Scholar
  10. 10.
    F. Bartels: Taylor vortices between two concentric rotating spheres. J.F.M. 119, 1–25 (1982)CrossRefMATHGoogle Scholar
  11. 11.
    L. Tuckerman: Formation of Taylor vortices in spherical Couette flow. Ph.D.Thesis, MIT Boston 1983Google Scholar
  12. 12.
    K. Bühler: Strömungsmechanische Instabilitäten zäher Medien im Kugelspalt. VDI-Fortschritt Berichte, Reihe 7, Nr. 96, Düsseldorf 1985Google Scholar
  13. 13.
    D.W. Moore: Viscous effects. Rotating Fluids in Geophysics, ed. P.H. Roberts, A.M. Soward, London, 29–66, 1978Google Scholar
  14. 14.
    L. Howarth: Laminar Boundary Layers. Handbuch der Physik Bd.VIII/1, ed. S. Flügge, p. 290, 1959Google Scholar
  15. 15.
    Yu.N. Belayev, I.M. Yavorskaya: Transition to Stochasticity of Viscous Flow between Rotating Spheres. Nonl. Dyn. and Turb., ed. Barenblatt et al., Boston, 61–70 (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • K. Bühler
    • 1
  • J. Zierep
    • 1
  1. 1.Institut für Strömungslehre und StrömungsmaschinenUniversität (TH)Karlsruhe 1Fed. Rep. of Germany

Personalised recommendations