Skip to main content

A Stochastic Analysis of the Displacements of Fluid Elements in Inhomogeneous Turbulence Using Kraichnan’s Method of Random Modes

  • Conference paper
Advances in Turbulence

Abstract

At an instant in time a homogeneous turbulent flow field can be represented as a summation of random Fourier components; this can be extended to describe turbulence near an interface or a boundary in shear-free flow, by adding an irrotational velocity field. The time evolution of the flow can be simulated by assuming that the modes are oscillatory functions of time with random frequencies and random amplitudes: i) our model simulates the energy containing eddies and the inertial subrange eddies with a (5/3) energy spectrum; ii) the time scale for the decorre lation of each eddy is made proportional to its length-scale corresponding to an Eulerian power spectrum proportional to ω −5/3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Durbin, P.A. (1983) Stochastic differential equations and turbulent dispersion. NASA Reference Publication 1103.

    Google Scholar 

  2. van Dop, H., Nieuwstadt. F.T.M & Hunt, J.C.R. (1985) Random walk models for particle displacements in inhomogeneous unsteady turbulent flows. Phys. Fluids. 28, 1639–1653.

    Article  MATH  ADS  Google Scholar 

  3. Sawford, B. & Hunt, J.C.R. (1986) Effects of turbulence structure, molecular diffusion and source size on fluctuations of concentration in homogeneous turbulence. J. Fluid Mech. 165, 373–400. J. Fluid Mech.

    Article  MATH  ADS  Google Scholar 

  4. Corrsin, S. (1963) J. Atmos. Sci. 20, 115–119.

    Article  ADS  Google Scholar 

  5. Snyder, W.H. & Lumley, J.L. (1981) Some measurements of particle velocity autocorrelation functions in a turbulent flow. J. Fluid Mech. 48, 41–71.

    Article  ADS  Google Scholar 

  6. Kraichnan, H. (1970) Diffusion by a random velocity field. Phys. Fluids. 13, 22–31.

    Article  MATH  ADS  Google Scholar 

  7. Drummond, I.T. Duane, S. & Horgan, R.R. (1984) Scalar diffusion in simulated helical turbulence with molecular diffusivity. J. Fluid Mech. 138, 75–91.

    Article  MATH  ADS  Google Scholar 

  8. Hunt, J.C.R. (1984) Turbulent structure in thermalconvection and shear-free boundary layers. J. Fluid Mech. 138, 161–184.

    Article  MATH  ADS  Google Scholar 

  9. Carruthers, D.J., Hunt, J.C.R. & Turfus, C. (1986) Turbulent flow near density inversion layers. Proc. of Euromech. 199, ‘Direct and Large Eddy Simulation of Turbulent Flows’. Ed. U. Schumann.

    Google Scholar 

  10. Batchelor, G.K. (1953) Theory of Homogeneous Turbulence. C.U.P.

    Google Scholar 

  11. Tennekes, H. (1975) Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67, 561–567.

    Article  MATH  ADS  Google Scholar 

  12. Townsend, A.A. (1966). Internal waves produced by a convective layer. J. Fluid Mech. 24, 307–319.

    Article  ADS  MathSciNet  Google Scholar 

  13. Carruthers, D.J. & Hunt, J.C.R. (1986) Velocity fluctuations near an interface between a turbulent region and a stably stratified layer. J. Fluid Mech. 165, 475–501.

    Article  MATH  ADS  Google Scholar 

  14. Hunt, J.C.R. & Graham, J.M.R. (1978) Free-stream turbulence near plane bounaries. J. Fluid Mech. 84, 209–235.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Turfus, C. (1985) Stochastic Modelling of Turbulent Dispersion near Surfaces. Ph.D. Dissertation, University of Cambridge.

    Google Scholar 

  16. Rao, N.J., Borwankar, J.D., Ramkrishna, D. (1974) Numerical solution of Ito integral equations. SIAM J. Control 12, 124–139.

    Article  MATH  Google Scholar 

  17. Wyngaard, J.C. & Brost, R.A. (1984) Top-down and bottom-up diffusion in the convective boundary layer. J. Atmos. Sci. 41, 102–112.

    Article  ADS  Google Scholar 

  18. Thomson, D.J. (1984) Random walk modelling of diffusion in inhomogeneous turbulence. Quart. J. Roy. Met. Soc. 110, 1107–1120.

    Article  ADS  Google Scholar 

  19. Hunt, J.C.R. (1985) Turbulent diffusion from sources in complex flows. Ann. Rev. Fluid Mech. 17 447–485.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Turfus, C., Hunt, J.C.R. (1987). A Stochastic Analysis of the Displacements of Fluid Elements in Inhomogeneous Turbulence Using Kraichnan’s Method of Random Modes. In: Comte-Bellot, G., Mathieu, J. (eds) Advances in Turbulence. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83045-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83045-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83047-1

  • Online ISBN: 978-3-642-83045-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics