Advertisement

One-Dimensional Easy-Plane Magnets: Classical Sine-Gordon Theory or a Quantum Model?

  • G. M. Wysin
  • A. R. Bishop
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 69)

Abstract

A classical mechanics description of one-dimensional easy-plane ferro- and antiferromagnets predicts the existence of sine-Gordon kink excitations in these systems, for the case of a small applied field within the (“strong”) easy plane. Here we consider:
  1. i)

    the deviations from the sine-Gordon model, due to stronger fields or weaker anisotropy, which result in modified kink properties, including negative effective masses and kink-antikink annihilation and reflection during collisions, and,

     
  2. ii)

    equilibrium thermodynamics, especially specific heat, for quantum spin S = 1/2, and S = 1 models, comparing with the predictions of classical sine-Gordon theory and with available experimental results.

     

Keywords

Critical Field Linear Stability Analysis Easy Plane Quantum Monte Carlo Anti Ferromagnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Steiner, K. Kakuri and J. K. Kjems, Z. Phys. B 53, 117 (1983)CrossRefADSGoogle Scholar
  2. J. P. Boucher, L. P. Regnault, J. Rossat-Mignod, J.-P. Renard, J. Bouillot, W. G. Stirling, and F. Mezei, Physica 120B, 241 (1983).Google Scholar
  3. 2.
    J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973)CrossRefADSGoogle Scholar
  4. J. M. Kosterlitz and D. J. Thouless, Prog. Low Temp. Phys. (D. F. Brewer, ed.), Vol. VIII B, North-Holland, Amsterdam (1978).Google Scholar
  5. 3.
    C. Kawabata, M. Takenchi and A. R. Bishop, J. Magn. Magn. Mat. 54–57, 871 (1986)Google Scholar
  6. A. R. Bishop et al., in preparation.Google Scholar
  7. 4.
    See, for example, P. Kumar, Phys. Rev. B 25, 483 (1982)CrossRefGoogle Scholar
  8. See, for example, P. Kumar, Physica 5D, 359 (1982)Google Scholar
  9. E. Magyari and H. Thomas, Phys. Rev. B 25, 531 (1982)CrossRefADSGoogle Scholar
  10. E. Magyari and H. Thomas, J. Phys. C 16, L535 (1983).CrossRefADSGoogle Scholar
  11. 5.
    H. J. Mikeska, J. Phys. C 11, L29 (1978)CrossRefGoogle Scholar
  12. H. J. Mikeska, J. Phys. 13, 2913 (1980).ADSMathSciNetGoogle Scholar
  13. 6.
    K. Kopinga, A. M. C. Tinus and W. J. M. de Jonge, Phys. Rev. B 29, 2868 (1984).CrossRefADSGoogle Scholar
  14. 7.
    G. M. Wysin, A. R. Bishop and P. Kumar, J. Phys. C 17, 5975 (1984)CrossRefADSGoogle Scholar
  15. G. M. Wysin, A. R. Bishop and P. Kumar, J. Phys. C 15, L337 (1982).CrossRefADSGoogle Scholar
  16. 8.
    I. Satija, G. M. Wysin and A. R. Bishop, Phys. Rev. B 31, 3205 (1985).CrossRefADSGoogle Scholar
  17. 9.
    G. M. Wysin and A. R. Bishop, Phys. Rev. B 34, 3377 (1986).CrossRefADSGoogle Scholar
  18. 10.
    G. Kamienarz and C. Vanderzande, preprint (1986).Google Scholar
  19. 11.
    I. U. Heilmann, R. J. Birgeneau, Y. Endoh, G. Reiter, G. Shirane and S. L. Holt, Solid State Commun. 31, 607 (1979).CrossRefADSGoogle Scholar
  20. 12.
    I. Harada, K. Sasaki and H. Shiba, Solid State Commun. 40, 29 (1981).CrossRefADSGoogle Scholar
  21. 13.
    N. Flüggen and H. J. Mikeska, Solid State Commun. 48, 293 (1983).CrossRefADSGoogle Scholar
  22. 14.
    G. M. Wysin, PhD. Thesis, Cornell University (1985).Google Scholar
  23. 15.
    G. M. Wysin, A. R. Bishop and J. Oitmaa, J. Phys. C 19, 221 (1986)CrossRefADSGoogle Scholar
  24. J. Magn. Magn. Mat. 54–57, 831 (1986).Google Scholar
  25. 16.
    R. Liebmann, M. Schöbinger and D. Hackenbracht, J. Phys. C 16, L633 (1983).CrossRefADSGoogle Scholar
  26. 17.
    G. M. Wysin and A. R. Bishop, in preparation.Google Scholar
  27. 18.
    M. D. Johnson and N. F. Wright, Phys. Rev. B 32, 5798 (1985).CrossRefADSGoogle Scholar
  28. 19.
    M. Fowler and X. Zotos, Phys. Rev. B 25, 2805 (1982).CrossRefMathSciNetGoogle Scholar
  29. 20.
    K. Sasaki and T. Tsuzuki, J. Magn. Magn. Mat. 31–34, 1283 (1983).Google Scholar
  30. 21.
    M. Suzuki, Prog. Th. 1454 (1976)Google Scholar
  31. M. Barma and B. S. Shastry, Phys. Rev. B 18, 3351 (1978).CrossRefADSGoogle Scholar
  32. 22.
    For examples, see J. J. Cullen and D. P. Landau, Phys. Rev. B 27, 297 (1983)CrossRefADSGoogle Scholar
  33. H. DeRaedt, A. Lagendijk and J. Fivez, Phys. Rev. B 46, 261 (1982).Google Scholar
  34. 23.
    H. Betsuyaku, Prog. Th. Phys. 73, 319 (1985); Phys. Rev. Lett. 53, 629 (1984).Google Scholar
  35. 24.
    I. Morgenstern and K. Binder, Phys. Rev. B 22, 288 (1980).CrossRefADSGoogle Scholar
  36. 25.
    M. G. Pini and A. Rettori, Phys. Rev. B 29, 5246 (1984)CrossRefADSGoogle Scholar
  37. A. M. C. Tinus, W. J. M. de Jonge and K. Kopinga, preprint (1985)Google Scholar
  38. A. M. C. Tinus, W. J. M. de Jonge and K. Kopinga, Phys. Rev. B 32, 3154 (1985).Google Scholar
  39. 26.
    A. R. Bishop and P. S. Lomdahl, Physica D 18, 54 (1986)CrossRefMATHADSMathSciNetGoogle Scholar
  40. G. M. Wysin and A. R. Bishop, J. Magn. Magn. Mat. 54–57, 1132 (1986).CrossRefADSGoogle Scholar
  41. 27.
    K. Nakamura et al., Phys. Rev. B 33, 1963 (1986)CrossRefADSGoogle Scholar
  42. K. Nakamura et al., Phys. Rev. Lett. 57, 5 (1986).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • G. M. Wysin
    • 1
  • A. R. Bishop
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations