Advertisement

Statics and Dynamics of the Random Field Ising Model (Theory)

  • R. Bruinsma
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 69)

Abstract

I will give in this lecture an introductory overview of our present understanding of the Random Field Ising Model (RFIM). As this is a subject of a large literature and a long, turbulent history, I will restrict myself to a small number of topics, whose choice is very subjective. In particular, I will neither discuss experimental nor numerical work, except when it cannot be avoided. It is, however, important to realize why such a disproportionately large amount of attention has been devoted to this model. The first reason is that the RFIM is the simplest model which incorporates the dramatic effect of quenched-in disorder coupled linearly to an order-parameter. This effect has been seen in a steadily growing list of experiments (1). It was extensively studied for the first time in diluted antiferromagnets in a magnetic field (2) but the RFIM is now used to explain how impurities affect displacive transitions, how phase separation of binary fluids proceeds in porous media or gels, and how hydrogen dissolves in metallic alloys. Random fields also play an important role in charge-density wave systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Y. Imry, J. Stat. Phys. 34, 849 (1984);CrossRefADSGoogle Scholar
  2. J. Villain, J. Phys. Lett. (Paris) 43, L551 (1982);Google Scholar
  3. B. I. Halperin and C. M. Varma, Phys Rev. B 14, 4030 (1976);CrossRefADSGoogle Scholar
  4. F. Brochard and P. G. de Gennes, J. Phys. Lett. (Paris) 44, L785 (1983);CrossRefGoogle Scholar
  5. 4.
    H. Fukuyama and P. A. Lee, Phys. Rev. B 17, 535 (1977), on the application of the random field X-Y model to charge-density wave systems.Google Scholar
  6. 2).
    For the relationship between the RFIM and diluted antiferromagnets in a uniform field, see: S. Fishman and A. Aharony, J. Phys. C 12, L729 (1979).CrossRefADSGoogle Scholar
  7. 3).
    A. Aharony, Phys. Rev. B 18, 3318 (1978).ADSGoogle Scholar
  8. 4).
    R. J. Birgeneau, R. A. Cowley, G. Shirane, and H. Yoshizawa, Phys. Rev. Lett. 54, 2147 (1985).CrossRefADSGoogle Scholar
  9. 5).
    A. P. Young and M. Nauenberg, Phys. Rev. Lett. 55, 2499 (1985).CrossRefGoogle Scholar
  10. 6).
    D. P. Belanger, A. R. King, V. Jaccarino, Phys. Rev. Lett. 49, 1050 (1982)Google Scholar
  11. D. P. Belanger, A. R. King, V. Jaccarino, J. Appl. Phys. 55, 2383 (1984);CrossRefADSGoogle Scholar
  12. D. P. Belanger, A. R. King, V. Jaccarino, and J. Cardy, Phys. Rev. B 29, 2522 (1983).CrossRefADSGoogle Scholar
  13. 7).
    R. A. Cowley, H. Yoshizawa, G. Shirane, and R. J. Birgeneau, Z. Phys. B 58, 15 (1984);CrossRefADSGoogle Scholar
  14. R. J. Birgeneau, R. A. Cowley, G. Shirane, and H. Yoshizawa, Phys. Rev. Lett. 54, 2147 (1985).CrossRefADSGoogle Scholar
  15. 8).
    A. P. Levanyuk, V. V. Osipov, A. S. Sigov, and A. A. Sobyanin, Sov. Phys. JETP 49, 176 (1979).ADSGoogle Scholar
  16. 9).
    For a review on neutron scattering, see: R. J. Birgeneau, R. A. Cowley, G. Shirane, and H. Yoshizawa, J. Stat. Phys. 34, 817 (1984).CrossRefADSGoogle Scholar
  17. 10).
    Both the equilibrium phase boundary as well as the threshold temperature for the onset of irreversibility obey this scaling law. D. P. Belanger, A. R. King, and V. Jaccarino, Phys. Rev. Lett. 54, 577 (1985);CrossRefADSGoogle Scholar
  18. A. R. King, V. Jaccarino, D. P. Belanger, and S. M. Rezende 32, 503 (1985).Google Scholar
  19. 11).
    G. Grinstein, Phys. Rev. Lett. 37, 944 (1976);CrossRefADSGoogle Scholar
  20. A. Aharony, Y. Imry, and S. k. Ma, ibid. 37, 1376 (1976);Google Scholar
  21. A. P. Young, J. Phys. C 10, L257 (1977);CrossRefADSGoogle Scholar
  22. G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979);CrossRefADSGoogle Scholar
  23. J. Cardy, Phys. Lett. 125B, 470 (1983);CrossRefMathSciNetGoogle Scholar
  24. D. Blankschtein, Y. Shapir, and A. Aharony, Phys. Rev. B 29, 1363 (1984).ADSGoogle Scholar
  25. 12).
    J. Z. Imbrie, Phys. Rev. Lett. 53, 1747 (1984).CrossRefADSGoogle Scholar
  26. 13).
    A. T. Oslielski and D. A. Huse, Phys. Rev. Lett. 56, 1298 (1986).CrossRefADSGoogle Scholar
  27. 14).
    A. Aharony, Y. Imry, and S. k. Ma, Phys. Rev. Lett. 37, 1364 (1976).CrossRefADSGoogle Scholar
  28. 15).
    A. J. Bray and M. A. Moore, preprint.Google Scholar
  29. 16).
    P. W. Anderson, B. Halperin, and C. Varma, Phil. Mag. 25, 1 (1972).CrossRefMATHADSGoogle Scholar
  30. 17).
    Y. Imry and S. k. Ma, Phys. Rev. Lett. 35, 1399 (1975).CrossRefADSGoogle Scholar
  31. 18).
    G. Grinstein and S. k. Ma, Phys. Rev. B 28, 2588 (1983).CrossRefADSGoogle Scholar
  32. 19).
    D. Fisher, J. Fröhlich, and T. Spencer, J. Stat. Phys. 34, 863 (1983).CrossRefADSGoogle Scholar
  33. 20).
    L. Néel, J. Phys. Rad. 11, 49 (1950).CrossRefGoogle Scholar
  34. 21).
    See, for instance: P. z. Wong and J. W. Cable, Phys. Rev. B 28, 536 (1983).Google Scholar
  35. 22).
    D. P. Belanger, et al., Phys. Rev. 29, 2636 (1984).CrossRefADSGoogle Scholar
  36. 23).
    D. P. Belanger, A. R. King, and V. Jaccarino, Phys. Rev. Lett. 54, 577 (1985).CrossRefADSGoogle Scholar
  37. 24).
    R. J. Birgeneau, R. A. Cowley, G. Shirane, and H. Yoshizawa, Phys. Rev. Lett. 54, 2147 (1985).CrossRefADSGoogle Scholar
  38. 25).
    D. S. Fisher, Phys. Rev. Lett. 56, 416 (1986); J. Villain, J. Phys. ( Paris), to be published.CrossRefADSGoogle Scholar
  39. 26).
    R. Bruinsma and G. Aeppli, Phys. Rev. Lett. 52, 1547 (1984); G. Aeppli and R. Bruinsma, J. Magn. 54–57, 25 (1986).Google Scholar
  40. 27).
    C. Ro, G. Grest, C. Soukoulis, and K. Levin, Phys. Rev. B 31, 1682 (1985).CrossRefADSGoogle Scholar
  41. 28).
    P. Debye, H. R. Anderson, and H. Brumberger, J. Appl. Phys. 28, 679 (1957); P.z. Wong, J. W. Cable, and P. Dimon, J. Appl. Phys. 55, 2377 (1984).CrossRefGoogle Scholar
  42. 29).
    See ref. 18. This expression is valid for Ising-Heisenberg magnets, not for the Ising mode, in which case E is a non-analytic function of f. For most applications, Eqs. (43) should be relevant.Google Scholar
  43. 30).
    M. Hagen, R. A. Cowley, S. K. Satija, H. Yoshizawa, G. Shirane, R. J. Birgeneau, and H. J. Guggenheim, Phys. Rev. B 28, 2602 (1983).CrossRefADSGoogle Scholar
  44. 31).
    J. Villain, Phys. Rev. Lett. 52, 1543 (1984);CrossRefADSGoogle Scholar
  45. G. Grinstein and J. Fernandez, Phys. Rev. B 29, 6389 (1984).CrossRefADSGoogle Scholar
  46. 32).
    R. Bruinsma, Phys. Rev. B 30, 289 (1984).ADSMathSciNetGoogle Scholar
  47. 33).
    M. Randeria, J. Sethna, and R. Palmer, Phys. Rev. Lett. 54, 1321 (1981).CrossRefADSGoogle Scholar
  48. 34).
    D. J. Thouless, Phys. Rev. Lett. 56, 1082 (1986).CrossRefADSGoogle Scholar
  49. 35).
    J. Shapir, Phys. Rev. Lett. 57, 271 (1986);CrossRefADSGoogle Scholar
  50. R. Bruinsma, ibid., 272, 271 (1986)Google Scholar
  51. D. Thouless, ibid., 273. 271 (1986)Google Scholar
  52. 36).
    B. Derrida, J. Vanninemus, and Y. Pomeau, J. Phys. C 11, 4749 (1978).CrossRefADSGoogle Scholar
  53. 37).
    I. Morgenstern, K. Binder, and R. M. Hornreich, Phys. Rev. B 23, 287 (1981).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • R. Bruinsma
    • 1
  1. 1.Physics Department and Solid State Science CenterUniversity of CaliforniaLos AngelesUSA

Personalised recommendations