Skip to main content

Statics and Dynamics of the Random Field Ising Model (Theory)

  • Conference paper
Nonlinearity in Condensed Matter

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 69))

Abstract

I will give in this lecture an introductory overview of our present understanding of the Random Field Ising Model (RFIM). As this is a subject of a large literature and a long, turbulent history, I will restrict myself to a small number of topics, whose choice is very subjective. In particular, I will neither discuss experimental nor numerical work, except when it cannot be avoided. It is, however, important to realize why such a disproportionately large amount of attention has been devoted to this model. The first reason is that the RFIM is the simplest model which incorporates the dramatic effect of quenched-in disorder coupled linearly to an order-parameter. This effect has been seen in a steadily growing list of experiments (1). It was extensively studied for the first time in diluted antiferromagnets in a magnetic field (2) but the RFIM is now used to explain how impurities affect displacive transitions, how phase separation of binary fluids proceeds in porous media or gels, and how hydrogen dissolves in metallic alloys. Random fields also play an important role in charge-density wave systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Imry, J. Stat. Phys. 34, 849 (1984);

    Article  ADS  Google Scholar 

  2. J. Villain, J. Phys. Lett. (Paris) 43, L551 (1982);

    Google Scholar 

  3. B. I. Halperin and C. M. Varma, Phys Rev. B 14, 4030 (1976);

    Article  ADS  Google Scholar 

  4. F. Brochard and P. G. de Gennes, J. Phys. Lett. (Paris) 44, L785 (1983);

    Article  Google Scholar 

  5. H. Fukuyama and P. A. Lee, Phys. Rev. B 17, 535 (1977), on the application of the random field X-Y model to charge-density wave systems.

    Google Scholar 

  6. For the relationship between the RFIM and diluted antiferromagnets in a uniform field, see: S. Fishman and A. Aharony, J. Phys. C 12, L729 (1979).

    Article  ADS  Google Scholar 

  7. A. Aharony, Phys. Rev. B 18, 3318 (1978).

    ADS  Google Scholar 

  8. R. J. Birgeneau, R. A. Cowley, G. Shirane, and H. Yoshizawa, Phys. Rev. Lett. 54, 2147 (1985).

    Article  ADS  Google Scholar 

  9. A. P. Young and M. Nauenberg, Phys. Rev. Lett. 55, 2499 (1985).

    Article  Google Scholar 

  10. D. P. Belanger, A. R. King, V. Jaccarino, Phys. Rev. Lett. 49, 1050 (1982)

    Google Scholar 

  11. D. P. Belanger, A. R. King, V. Jaccarino, J. Appl. Phys. 55, 2383 (1984);

    Article  ADS  Google Scholar 

  12. D. P. Belanger, A. R. King, V. Jaccarino, and J. Cardy, Phys. Rev. B 29, 2522 (1983).

    Article  ADS  Google Scholar 

  13. R. A. Cowley, H. Yoshizawa, G. Shirane, and R. J. Birgeneau, Z. Phys. B 58, 15 (1984);

    Article  ADS  Google Scholar 

  14. R. J. Birgeneau, R. A. Cowley, G. Shirane, and H. Yoshizawa, Phys. Rev. Lett. 54, 2147 (1985).

    Article  ADS  Google Scholar 

  15. A. P. Levanyuk, V. V. Osipov, A. S. Sigov, and A. A. Sobyanin, Sov. Phys. JETP 49, 176 (1979).

    ADS  Google Scholar 

  16. For a review on neutron scattering, see: R. J. Birgeneau, R. A. Cowley, G. Shirane, and H. Yoshizawa, J. Stat. Phys. 34, 817 (1984).

    Article  ADS  Google Scholar 

  17. Both the equilibrium phase boundary as well as the threshold temperature for the onset of irreversibility obey this scaling law. D. P. Belanger, A. R. King, and V. Jaccarino, Phys. Rev. Lett. 54, 577 (1985);

    Article  ADS  Google Scholar 

  18. A. R. King, V. Jaccarino, D. P. Belanger, and S. M. Rezende 32, 503 (1985).

    Google Scholar 

  19. G. Grinstein, Phys. Rev. Lett. 37, 944 (1976);

    Article  ADS  Google Scholar 

  20. A. Aharony, Y. Imry, and S. k. Ma, ibid. 37, 1376 (1976);

    Google Scholar 

  21. A. P. Young, J. Phys. C 10, L257 (1977);

    Article  ADS  Google Scholar 

  22. G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979);

    Article  ADS  Google Scholar 

  23. J. Cardy, Phys. Lett. 125B, 470 (1983);

    Article  MathSciNet  Google Scholar 

  24. D. Blankschtein, Y. Shapir, and A. Aharony, Phys. Rev. B 29, 1363 (1984).

    ADS  Google Scholar 

  25. J. Z. Imbrie, Phys. Rev. Lett. 53, 1747 (1984).

    Article  ADS  Google Scholar 

  26. A. T. Oslielski and D. A. Huse, Phys. Rev. Lett. 56, 1298 (1986).

    Article  ADS  Google Scholar 

  27. A. Aharony, Y. Imry, and S. k. Ma, Phys. Rev. Lett. 37, 1364 (1976).

    Article  ADS  Google Scholar 

  28. A. J. Bray and M. A. Moore, preprint.

    Google Scholar 

  29. P. W. Anderson, B. Halperin, and C. Varma, Phil. Mag. 25, 1 (1972).

    Article  MATH  ADS  Google Scholar 

  30. Y. Imry and S. k. Ma, Phys. Rev. Lett. 35, 1399 (1975).

    Article  ADS  Google Scholar 

  31. G. Grinstein and S. k. Ma, Phys. Rev. B 28, 2588 (1983).

    Article  ADS  Google Scholar 

  32. D. Fisher, J. Fröhlich, and T. Spencer, J. Stat. Phys. 34, 863 (1983).

    Article  ADS  Google Scholar 

  33. L. Néel, J. Phys. Rad. 11, 49 (1950).

    Article  Google Scholar 

  34. See, for instance: P. z. Wong and J. W. Cable, Phys. Rev. B 28, 536 (1983).

    Google Scholar 

  35. D. P. Belanger, et al., Phys. Rev. 29, 2636 (1984).

    Article  ADS  Google Scholar 

  36. D. P. Belanger, A. R. King, and V. Jaccarino, Phys. Rev. Lett. 54, 577 (1985).

    Article  ADS  Google Scholar 

  37. R. J. Birgeneau, R. A. Cowley, G. Shirane, and H. Yoshizawa, Phys. Rev. Lett. 54, 2147 (1985).

    Article  ADS  Google Scholar 

  38. D. S. Fisher, Phys. Rev. Lett. 56, 416 (1986); J. Villain, J. Phys. ( Paris), to be published.

    Article  ADS  Google Scholar 

  39. R. Bruinsma and G. Aeppli, Phys. Rev. Lett. 52, 1547 (1984); G. Aeppli and R. Bruinsma, J. Magn. 54–57, 25 (1986).

    Google Scholar 

  40. C. Ro, G. Grest, C. Soukoulis, and K. Levin, Phys. Rev. B 31, 1682 (1985).

    Article  ADS  Google Scholar 

  41. P. Debye, H. R. Anderson, and H. Brumberger, J. Appl. Phys. 28, 679 (1957); P.z. Wong, J. W. Cable, and P. Dimon, J. Appl. Phys. 55, 2377 (1984).

    Article  Google Scholar 

  42. See ref. 18. This expression is valid for Ising-Heisenberg magnets, not for the Ising mode, in which case E is a non-analytic function of f. For most applications, Eqs. (43) should be relevant.

    Google Scholar 

  43. M. Hagen, R. A. Cowley, S. K. Satija, H. Yoshizawa, G. Shirane, R. J. Birgeneau, and H. J. Guggenheim, Phys. Rev. B 28, 2602 (1983).

    Article  ADS  Google Scholar 

  44. J. Villain, Phys. Rev. Lett. 52, 1543 (1984);

    Article  ADS  Google Scholar 

  45. G. Grinstein and J. Fernandez, Phys. Rev. B 29, 6389 (1984).

    Article  ADS  Google Scholar 

  46. R. Bruinsma, Phys. Rev. B 30, 289 (1984).

    ADS  MathSciNet  Google Scholar 

  47. M. Randeria, J. Sethna, and R. Palmer, Phys. Rev. Lett. 54, 1321 (1981).

    Article  ADS  Google Scholar 

  48. D. J. Thouless, Phys. Rev. Lett. 56, 1082 (1986).

    Article  ADS  Google Scholar 

  49. J. Shapir, Phys. Rev. Lett. 57, 271 (1986);

    Article  ADS  Google Scholar 

  50. R. Bruinsma, ibid., 272, 271 (1986)

    Google Scholar 

  51. D. Thouless, ibid., 273. 271 (1986)

    Google Scholar 

  52. B. Derrida, J. Vanninemus, and Y. Pomeau, J. Phys. C 11, 4749 (1978).

    Article  ADS  Google Scholar 

  53. I. Morgenstern, K. Binder, and R. M. Hornreich, Phys. Rev. B 23, 287 (1981).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bruinsma, R. (1987). Statics and Dynamics of the Random Field Ising Model (Theory). In: Bishop, A.R., Campbell, D.K., Kumar, P., Trullinger, S.E. (eds) Nonlinearity in Condensed Matter. Springer Series in Solid-State Sciences, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83033-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83033-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83035-8

  • Online ISBN: 978-3-642-83033-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics