Structural Transformations in DNA

  • S. M. Lindsay
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 69)


DNA undergoes displacive transitions between the A, B and z forms, and order-disorder transitions such as the strand separation. The displacive transitions may be controlled by the highly charged phosphate backbone of the polymer interacting via the surrounding electrolyte. Interactions between neighboring molecules dominate the A to B transition since A-DNA appears only in concentrated (aggregated) solutions or in fibers, and the degree to which adjacent molecules are aligned parallel controls the transition rate. Modes of GHz. frequencies are probably involved in the dynamical pathways of these transitions and this is a frequency region in which the dynamics of the surrounding hydration shell needs to be considered explicitly. This is because the water close to the double helix (primary hydration) undergoes a viscoelastic transition at about 4 GHz. while the more remote water (secondary hydration) undergoes this transition at about 80 GHz. Melting can be brought about by an increase in the phonon population in the small bandwidth occupied by modes which contribute stretch amplitude to the bridging hydrogen bonds.


Double Helix Hydration Shell Mode Softening Strand Separation Lattice Dynamic Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.M. Eyster and E.W. Prohofsky, Biopolymers 16, 965–982 (1977).CrossRefGoogle Scholar
  2. 2.
    J.A. Krumhansl, G.M. Wysin, D.M. Alexander, A. Garcia, P.S. Lomdahl and S.P. Layne in Structure and Motion: Membranes, Nucleic Acids and Proteins (Eds E. Clementi, G. Corongiu, M.H. Sarma and R.H. Sarma) Adenine, N.Y., 1985, pp 407–416.Google Scholar
  3. 3.
    D.M. Soumpasis, Proc. Nat. Acad. Sci. (USA) 81, 5116–5120 (1984).CrossRefADSGoogle Scholar
  4. 4.
    D.M. Soumpasis, J. Wiechen and T.M. Jovin, “Relative Stabilities and Transitions of DNA Conformations in 1:1 Electrolytes: A Theoretical Study” preprint (1985).Google Scholar
  5. 5.
    S.M. Lindsay in Progress and Challenges in Biological and Synthetic Polymer Research (Eds C. Kawabata and A.R. Bishop) Ohmska, Tokyo, 1986.Google Scholar
  6. 6.
    S.M. Lindsay in Structure and Dynamics in Biomolecules (Ed. E. Clementi) Plenum, NY (1987).Google Scholar
  7. 7.
    N.J. Tao, S.M. Lindsay and A. Rupprecht, Biopolymers, in press (1986).Google Scholar
  8. 8.
    S.M. Lindsay, J. Powell, E.W. Prohofsky and K.V. Devi-Prasad in Structure and Motion: Membranes, Nucleic Acids and Proteins (Eds E. Clementi, G. Corongiu, M.H. Sarma and R.H. Sarma) Adenine, N.Y., 1985, pp 531–551.Google Scholar
  9. 9.
    C. DeMarco, S.M. Lindsay, M. Pokorny, J. Powell and A. Rupprecht, Biopolymers 24, 2035–2040 (1985).CrossRefGoogle Scholar
  10. 10.
    S.M. Lindsay, J. Powell and A. Rupprecht, Phys. Rev. Lett. 53, 1853–1855 (1984).CrossRefADSGoogle Scholar
  11. 11.
    H. Urabe and Y. Tominaga, J. Phys. Soc. Japan 50, 3543–3544 (1981).CrossRefADSGoogle Scholar
  12. 12.
    The equilibration of Z-DNA is independent of concentration over six orders of magnitude - F.M. Pohl, A. Ranade and M. Stockburger, Biochim. Biophys. Acta 335, 85–92 (1973).Google Scholar
  13. 13.
    This is an extension of an experiment first performed by Herbeck et. al. - R. Herbeck, T.J. Yu and W.L. Peticolas, Biochemistry 15, 2656–2660 (1976).Google Scholar
  14. 14.
    S.A. Lee, J. Powell, N.J. Tao, G. Lewen, S.M. Lindsay and A. Rupprecht, to be published.Google Scholar
  15. 15.
    G. Lewen, S.M. Lindsay, N.J. Tao, T. Weidlich, R.J. Graham and A. Rupprecht, Biopolymers 25, 765–770 (1986).Google Scholar
  16. 16.
    B.N. Conner, C. Yoon, J.L. Dickerson and R.E. Dickerson, J. Mol. Biol. 174, 663–695 (1984).CrossRefGoogle Scholar
  17. 17.
    S.C. Harvey, Nucleic Acids Res. 11, 4867–4878 (1983).CrossRefGoogle Scholar
  18. 18.
    W.K. Olson, A.R. Srivasan, N.L. Marky and V.N. Balaji, Cold Spring Harbor Symp. Quant. Biol. 47, 229–242 (1983).Google Scholar
  19. 19.
    Y. Tominaga, M. Shida, K. Kubota, H. Urabe, Y. Nishimura and M. Tsuboi, J. Chem. Phys. 83, 5972–5975 (1985).CrossRefADSGoogle Scholar
  20. 20.
    Y. Gao and E.W. Prohofsky, J. Chem. Phys. 80, 2242–2243(1984).Google Scholar
  21. 21.
    Y. Gao, K.V. Devi-Prasad and E.W. Prohofsky, J. Chem. Phys. 80, 6291–6298 (1984).CrossRefADSGoogle Scholar
  22. 22.
    Y. Kim, K.V. Devi-Prasad and E.W. Prohofsky, Phys. Rev. B32, 5185–5189 (1985).ADSGoogle Scholar
  23. 23.
    Y. Kim and E.W. Prohofsky, Phys. Rev. B33, 5676–5681 (1985).ADSGoogle Scholar
  24. 24.
    Y. Kim and E.W. Prohofsky, “Vibrational Fluctuations around a Nucleation Defect of Melting in Poly(dG).Poly(dC)” preprint (1986).Google Scholar
  25. 25.
    E.W. Prohofsky, Comments Mol. Cell. Biophys. 2, 65–86 (1983).Google Scholar
  26. 26.
    Y. Kim and E.W Prohofsky, “ Predicted Role of Particular Phonons in the Strand Separation Melting of the DNA Double Helix” Preprint (1986).Google Scholar
  27. 27.
    T. Weidlich, S.M. Lindsay and A. Rupprecht, “The Optical Properties of Li-and Na-DNA Films” preprint (1986).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • S. M. Lindsay
    • 1
  1. 1.Physics DepartmentArizona State UniversityTempeUSA

Personalised recommendations